
Package ’misha’ - User Manual

July 19, 2019

’misha’ package is intended to help users to efficiently analyze genomic data achieved from various ex-
periments. The data must be stored in Genomic Database in certain format that is described later in this
document. In addition the document describes fundamental concepts of the package such as track expression,
iterators, etc.

Contents

1 Genomic Database 3

2 File Formats 4
2.1 chrom_sizes.txt . 4
2.2 Seq File . 4
2.3 PSSM Set . 4

2.3.1 PSSM Key . 4
2.3.2 PSSM Data . 5

3 Main Concepts 5
3.1 Intervals . 5

3.1.1 1D Intervals . 5
3.1.2 2D Intervals . 5
3.1.3 Intervals Sets . 5
3.1.4 Dual Intervals . 5
3.1.5 Serializing Intervals, Big and Small Intervals Sets . 6

3.2 Tracks . 6
3.2.1 1D Track . 6
3.2.2 Array Track . 7
3.2.3 2D Track . 7
3.2.4 Track as an Intervals Set . 7
3.2.5 Track Attributes . 7
3.2.6 Track Variables . 8
3.2.7 Track Attributes vs. Track Variables . 8

3.3 Track Expressions . 8
3.3.1 Introduction . 8
3.3.2 Virtual Tracks . 9
3.3.3 Administrating Virtual Tracks . 10
3.3.4 Track Expression Evaluation under Optimization . 11
3.3.5 Revealing Current Iterator Interval . 11
3.3.6 Iterators . 12
3.3.7 Scope . 14
3.3.8 Band . 14

4 Input Mode and Auto-Completion 15

1

5 Random Algorithms 16

6 Multitasking 16
6.1 Controlling the Number of Processes . 16
6.2 Limiting the Memory Consumption . 16
6.3 Other Considerations . 17

2

1 Genomic Database

Genomic Database starts with a root (also frequently referred as GROOT), i.e. top directory containing
certain subdirectories and files. A new database can be created using gdb.create function. This is the
easiest way to do it. One can also build a database manually by generating all the necessary components
that will be described later in this document.

Before the data in a Genomic Database can be accessed one must establish connection with it by calling
gdb.init function. On launch the package connects to a Genomic Database located in PACKAGEDIR/track-

db/test which serves all the examples in the reference manual.
A valid Genomic Database should contain the following files and subdirectories:

chrom_sizes.txt is a file containing the list of chromosomes and their sizes.

tracks is a directory that servers as a repository for all tracks and interval sets. May contain other subdi-
rectories.

pssms is a directory containing PSSM sets (PSSM data and PSSM key files).

seq is a directory containing full genomic sequences.

pssms and seq directories are optional and are required only by a subset of functions in the package.

An example of a Genomic Database file structure:

hg18/ <- Genomic Database root directory

chrom_sizes.txt

.ro_attributes <- List of read-only attributes

pssms/ <- (optional)

motif1.data <- pssm data file

motif1.key <- pssm key file

mypssm.data <- ...

mypssm.key <- ...

seq/ <- (optional)

chr1.seq <- seq (sequence) files

chr2.seq <- ...

chr3.seq <- ...

tracks/

tss.interv <- small intervals set = tss

big_data.interv/ <- big intervals set = big_data

.meta <- summary of the intervals set

chr1 <- chrom files

chr5 <- ...

rpt.track/ <- track = rpt

.attributes <- track attributes (optional)

chr1 <- chrom files

chr2 <- ...

chr3 <- ...

vars/ <- track variables (optional)

myresult <- track variable

test/

intervals1.interv <- intervals = test.intervals1

track1.track/ <- track = test.track1

.attributes <- track attributes (optional)

chr1 <- chrom files

chr2 <- ...

chr3 <- ...

3

savta/

fourC.track/ <- track = savtra.fourC

chr1 <- chrom files

chr2 <- ...

chr3 <- ...

2 File Formats

2.1 chrom_sizes.txt

chrom_sizes.txt file must be located under the root directory of Genomic Database. This file lists the
chromosomes and their sizes. The chromosome name appears in the first column, the size is indicated in the
second column. The chromosome name should appear without ”chr” prefix. The two columns are separated
by tab character. Example:

1 247249719

2 242951149

3 199501827

X 154913754

Y 57772954

2.2 Seq File

Seq (aka sequence) files are located in seq directory. Each of the Seq files contains a genomic sequence
for a given chromosome as a contiguous string of ASCII characters. The length of the string should match
the length of the chromosome. The file must be called chrXXX.seq where XXX indicates the name of the
chromosome as it appears in chrom_sizes.txt file.

Here is an example of an unusually short (25 base pairs) Seq file:

ggtgaAGccctggagattcttatta

2.3 PSSM Set

Each PSSM Set consists of two files: PSSM key and PSSM data. The files should be named XXX.key and
XXX.data accordingly, where XXX is the name of PSSM set. Both files must be placed into pssms directory.

2.3.1 PSSM Key

PSSM Key file contains description of PSSMs in the following format (columns are separated by tab char-
acter):

Column Type Description
ID Integer Unique ID (referenced in PSSM Data file)
Sequence String PSSM sequence
Biderectional ’0’ or ’1’ If Bidirectional is ’1’ energy is calculated on complementary strand

as well

Example:

0 *************ATTAAT************** 1

1 *********A*ACACACACA*****A******* 1

2 *************AAAATGGC*G********** 1

3 *************ACTGCTTG************ 1

4 ****WW**GTWGCATACTTTT*GGCG******* 1

4

5 *********C*RGCAACATKTTG********** 1

6 ****G*G*G*G*GAGCGAGA*RG********** 1

7 **************CCGAAG************* 1

2.3.2 PSSM Data

PSSM Data file contains probability matrices for each PSSM key in the following format (columns are
separated by tab character):

Column Type Description
ID Integer Unique ID (must appear in PSSM Key file)
Position Integer Zero based position in the range of [0, length(PSSM sequence)-1]
Probability of ’A’ Numeric Probability of ’A’ in the range of [0, 1]
Probability of ’C’ Numeric Probability of ’C’ in the range of [0, 1]
Probability of ’G’ Numeric Probability of ’G’ in the range of [0, 1]
Probability of ’T’ Numeric Probability of ’T’ in the range of [0, 1]

3 Main Concepts

3.1 Intervals

3.1.1 1D Intervals

1D interval (or one-dimensional interval) represents a genomic section. It is defined by (chrom, start, end)
where start and end are genomic coordinates (start < end). The coordinates are zero-based, i.e. the
chromosome starts at coordinate 0. The end coordinate marks the last coordinate in the section plus 1. To
represent a point in the genome at coordinate X one should create an interval with start coordinate set to
X and end coordinate set to X + 1.

3.1.2 2D Intervals

2D interval (or two-dimensional interval) represents a rectangle in a genomic space. It is defined by
(chrom1, start1, end1, chrom2, start2, end2), where start1, start2, end1 and end2 are start and end coordi-
nates accordingly that mark the limits of a rectangle.

3.1.3 Intervals Sets

Multiple intervals can be combined into a table which is called intervals set or frequently simply referred
as intervals. This table is represented by a data frame. In case of 1D intervals the data frame must have
the first 3 columns named chrom, start, end. Likewise 2D intervals must have the first 6 columns named
chrom1, start1, end1, chrom2, start2, end2.

Additional columns might be added to the intervals, some of them might be used by various functions.
For instance, gintervals.neighbors function makes use of strand column if it is presented in 1D intervals
(should come after the regular 3 columns). Use gintervals and gintervals.2d functions to create 1D and
2D intervals accordingly.

Both 1D and 2D intervals are widely used in various functions. Some of these functions manipulate the
intervals (unify, intersect, ...). Others use the intervals to limit the scope on which the function acts. There
are also functions that make their calculation for each interval in the intervals set.

3.1.4 Dual Intervals

Dual intervals is a list containing two elements. The first element is 1D intervals set, while the second
element is 2D intervals set.

ALLGENOME variable is frequently used as a default value for intervals argument. ALLGENOME is an in-
tervals set of dual type. ALLGENOME[[1]] represents a set of intervals that covers the whole genome (1D),

5

while ALLGENOME[[2]] contains all the possible pairs between the chromosomes (2D). One can also use
gintervals.all and gintervals.2d.all functions to return all 1D or 2D intervals.

3.1.5 Serializing Intervals, Big and Small Intervals Sets

Intervals sets can be saved in Genomic Database. Use gintervals.save and gintervals.load functions to
save or load an intervals set from the database and gintervals.update to update / add / delete a certain
chromosome from the set.

Internally intervals sets can be stored in two different formats: small intervals set or big intervals set. The
specific format is chosen depending on the size of the intervals set. Big format is selected for intervals sets
that contain more than gbig.intervals.size intervals (gbig.intervals.size is set via options), wherever
smaller sets are consequently stored in a small format. Use gintervals.is.bigset to determine the format
of the stored intervals set.

Saved intervals sets in small format can be seamlessly used in all functions and track expressions without
the need to explicitly load them.

'annotations' is an intervals set saved in Genomic Database

> gintervals.intersect("annotations", gintervals(2))

chrom start end

1 chr2 20 2000

2 chr2 3000 8000

3 chr2 9000 11000

Likewise big intervals sets can be used in many but not all the functions. The notable exception is
gintervals.load that allows to load only a single chromosome (or a chromosome pair for 2D cases) of a
big intervals set.

3.2 Tracks

Track is a data structure that allows to bind numeric data (floating point values) to genomic space (a set
of genomic intervals). The data in the tracks can be typically accessed through track expressions that are
widely used by various functions of the package.

Two fundamental types of tracks exist: 1D and 2D.

3.2.1 1D Track

1D track (or one-dimensional track) maps numeric values V0, ..., Vn to non-overlapping 1D intervals. Two
formats of 1D tracks are supported by the package: Dense (sometimes also referred as Fixed Bin) and Sparse.

For a Dense track the size of the genomic interval is always fixed and called bin size. Numeric values are
stored for all genomic intervals that cover the genome, however some of the values are allowed to be NaN .
Dense track file can be seen as a contiguous chunk of values V0, ..., Vn, where Vi is mapped to an interval
[binsize ∗ i, binsize ∗ (i + 1)). Dense track’s files do not store intervals’ coordinates - which allow them to
represent large amount of numeric data in a compact way. The size of a Dense track is inversely proportional
to the bin size. The complexity of random access to a value at given coordinate is constant, i.e. O(1).

Sparse tracks allow higher degree of freedom vs. Dense tracks. Each numeric value can be mapped to a
genomic interval of an arbitrary size. The size of a Sparse track is proportional to the number of numeric
values (not including NaNs). On the ”cons” side the complexity of random access to a value at given
coordinate is O(logN), where N is the number of values in the track.

To sum up the differences between Dense and Sparse tracks please refer the following table:

6

Dense Sparse
Optimal use case Data covering nearly the whole

genome
Data covering a limited portion of
a genome

Values stored Per bin (interval of a fixed size) Per interval of an arbitrary size
Random access complexity O(1) O(logN)
Disk usage 4 bytes per bin 20 bytes per value

1D tracks can be created by variety of functions such as: gtrack.create, gtrack.create_sparse,
gtrack.import_set and more.

3.2.2 Array Track

Array track is similar to Sparse track in a way that it maps data to one-dimensional intervals of an arbitrary
size. Yet unlike Sparse track an Array track can map more than one value into each interval. Array tracks
allow thus to store large amount of data in one track - a task that would otherwise require maintenance of
numerious number of tracks.

The values of an Array track are organized in columns each having a name and an index. One can see it
as an NxM table where N is the number of intervals and M is the number of columns. The size of an Array
track is proportional to the number of total numeric values stored inside (not including NaNs).

Attractive as they are Array tracks should not be abused and serve as a replacement of a Dense or Sparse
track. A single Sparse track will always be more compact and efficient than an Array track holding a single
column.

Array tracks are created by gtrack.array.import function.

3.2.3 2D Track

2D track (or two-dimensional track) maps numeric values V0, ..., Vn to non-overlapping 2D intervals. A
typical use of a 2D track is to represent interaction between different parts of the genome.

2D tracks are internally stored in chunks, each chunk containing multiple track values. When a track
value is accessed, the whole chunk containing it must be loaded into memory. The size of a chunk in bytes is
controlled by gtrack.chunk.size option and typically it represents a tradeoff between the optimal access
to a single value (a small chunk) and an access to multiple values (a large chunk).

During the access to multiple track values a few chunks can be invloved and loaded into memory. Since
2D tracks can potentially be huge one can limit the total number of chunks simultaneously stored in the
memory by setting gtrack.num.chunks parameter.

2D tracks usually come in Rectangles format. A more space-efficient Points format also exists and
it behaves similarly to Rectangles. Computed format is also supported though it is not covered by this
document.

Rectangles track can be created by gtrack.create, gtrack.2d.create.
Points track is created by gtrack.2d.import_contacts.

3.2.4 Track as an Intervals Set

Since tracks represent a set of intervals (plus values) they are allowed to be used in various functions such
as gextract, gintervals.neighbors, gintervals.chrom_sizes as a substitute for intervals sets. Dense
tracks are the only exception to this rule and they cannot substitute intervals sets.

3.2.5 Track Attributes

In addition to numeric data a track may store arbitrary meta-data such as description, source, etc. The
meta-data is stored in the form of name-value pairs or attributes where the value is a character string.
All tracks created by gtrack.create, gtrack.smooth and other functions automatically add created.by,
created.date and description attributes.

Though not officially enforced attributes are intended to store relatively short (but not empty) character
strings. Please use track variables to store data in any other format.

7

A single attribute can be retrieved, added, modified or deleted using gtrack.attr.get and gtrack.attr.set

functions. Bulk access and modification is available through gtrack.attr.export and gtrack.attr.import

functions. Track names whose attributes match a pattern can be retrieved using gtrack.ls function.
Attribute can be defined as read-only which will prevent it from being modified or deleted. By default

created.by and created.date attributes are read-only. Use gdb.get_readonly_attrs, gdb.set_readonly_attrs
functions to retrieve or set the list of read-only attributes.

3.2.6 Track Variables

Track statistics, results of time-consuming per-track calculations, historical data and any other data in
arbitrary format can be stored in a track’s supplementary data in the form of track variables. Track variable
can be retrieved, added, modified or deleted using gtrack.var.get, gtrack.var.set, gtrack.var.rm functions. List
of track variables can be retrieved using gtrack.var.ls function.

3.2.7 Track Attributes vs. Track Variables

Though both track attributes and track variables can be used to store meta-data of a track, there are a few
important differences between the two that are summed up in the following table:

Track Attributes Track Variables
Optimal use case Track properties as short, non-

empty character strings (descrip-
tion, source, ...)

Arbitrary data associated with
the track

Value type Character string Arbitrary
Single value retrieval gtrack.attr.get gtrack.var.get

Single value modification gtrack.attr.set gtrack.var.set

Bulk value retrieval gtrack.attr.export —
Bulk value modification gtrack.attr.import —
Object names retrieval gtrack.attr.import gtrack.var.ls

Object removal gtrack.attr.set with an empty
string

gtrack.var.rm

Search by value gtrack.ls —

3.3 Track Expressions

3.3.1 Introduction

Track expression is a key concept of the package. Track expressions are widely used in various functions
(gscreen, gextract, gdist, ...).

Track expression is a character string that closely resembles a valid R expression. Just like any other R
expression it may include conditions, functions and variables defined beforehand. "1 > 2", "mean(1:10)"
and "myvar < 17" are all valid track expressions. Unlike regular R expressions track expression might also
contain track names or virtual track names.

How does a track expression get evaluated? A track expression is accompanied by an iterator that
determines a set of intervals over which the expression iterator goes. For each each iterator interval the track
expression is evaluated. The value of a track expression "mean(1:10)" is constant regardless the iterator
interval. However suppose the track expression contains a track name mytrack, like: "mytrack * 3", and
the whole story becomes very different. The library first recognizes that mytrack is not a regular R variable
but rather a track name. A new R variable named mytrack is added then to R environment. For each
iterator interval this variable is assigned the corresponding value of the track. This value obviously depends
on the iterator interval. Once mytrack is assigned the corresponding value, the track expression is evaluated
in R.

8

So how exactly the value of mytrack variable is determined given the iterator interval? We will demon-
strate the answer by the following example. Suppose the track mytrack is in sparse format. It consists of a
single chromosome with the following values:

chrom start end value
chr1 100 200 10
chr1 200 250 25
chr1 500 560 17
chr1 600 700 44

What would be the value of the variable mytrack given an iterator interval? The resulted value is an
average of all values of track mytrack covered by the iterator interval. For example, if the iterator interval
is [230, 620) then the resulted value is an average of values 25, 17 and 44. Similarly if the iterator interval
is [0, 300) then the resulted value is an average of 10 and 25. Lastly if the iterator intervals is [300,

400) then the resulted value is NaN . Same evaluation logics is applied for Dense and Array tracks. (In the
latter case the values from all columns are averaged.) On contrary Rectangles track value is calculated as a
weighted average of the values covered by the iterator interval. The weight equals to the intersection area of
the iterator interval and the 2D interval that contains the value.

See the table below:

Track Type Value
Dense Average of non NaN values covered by iterator interval.
Sparse Average of non NaN values covered by iterator interval.
Array Average of non NaN values from all columns covered by iterator interval.
Rectangles Weighted average of non NaN values covered by iterator interval. Each weight

equals to the intersection area between iterator interval and track interval that
contains the value.

3.3.2 Virtual Tracks

So far we showed that the value of a mytrack variable is set to be the average (or weighted average) of the
track values that are covered by the iterator interval. But what if we do not want to average the values but
rather pick up the maximal or minimal values? What if we want to use the percentile of a track value rather
than the value itself? And maybe we even want to alter the iterator interval itself on the fly? This is where
virtual tracks become useful.

Virtual track is a set of rules that describe how the ”source”(a real track or intervals) should be proceeded,
and how the iterator interval should be modified. Virtual tracks are created with gvtrack.create function:

> gvtrack.create("myvtrack", "dense_track")

This call creates a new virtual track named myvtrack. This virtual track can be used in the track
expression instead of a real track dense_track. In our example myvtrack is just an alias of dense_track.
Yet we can go on and create a more complicated virtual track if we specify a ”function”, i.e. instruct the
virtual track of what should be its value in track expression.

> gvtrack.create("myvtrack", "dense_track", "global.percentile")

In this example when myvtrack is evaluated in the track expression it will return the percentile of Vavg

among the values of dense_track where Vavg is an average (or weighted average) of the track values that
are covered by the iterator interval.

Virtual tracks are especially useful for Array tracks. By default if an Array track is used in a track
expressions, its interval value would be the average of all non-NaN column values covered by an iterator
interval. gvtrack.array.slice allows to select specific columns and to specify the function applied to the
values of each track interval.

9

> gvtrack.create("myvtrack", "array_track", "sum")

> gvtrack.array.slice("myvtrack", c("col2", "col5"), "max")

In this example we create a virtual track based on array_track. Assume that an iterator interval I
covers n different intervals in array_track: I0, ..., In. The value of myvtrack in a track expression would
be then:

n∑
i=1

max(Vi,2, Vi,5)

where Vi,j is a value of the track in column j for interval Ii.
Virtual tracks allow also to alter the iterator interval ”on the fly”:

> gvtrack.iterator("myvtrack", sshift = -100, eshift = 200)

In this example we expand each iterator interval by adding -100 to its start coordinate and 200 to its
end coordinate.

Similarly iterator modifiers can be defined for 2D intervals. Moreover iterator modifier can create a 1D
interval from a 2D iterator interval by projecting one of its axes.

> gvtrack.create("myvtrack", "dense_track")

> gvtrack.iterator("myvtrack", dim = "2")

It is important to remember that iterator modifiers transform the iterator interval only for the given
virtual tracks. Assume an iterator interval I and two virtual tracks V0 and V1. If I is a 2D interval than band
rules are applied first to it. I is tranformed then to I0 and I1 according to the modification rules defined by
the virtual tracks. Finally I0 and I1 are passed to V0 and V1 accordingly as the iterator intervals.

So far we have used a track dense_track as a ”source” of a virtual track. We can also use intervals as a
source. In this case the value of the virtual track will be some function that takes into account the ”source”
intervals and the current iterator interval.

> gvtrack.create("myvtrack", "annotations", "distance")

> intervs <- gscreen("dense_track > 0.45")

> gextract("myvtrack", ALLGENOME, iterator = intervs)

In this example myvtrack returns the minimal distance between intervals from an interval set annotations
and the center of the current iterator interval from intervs.

For a full list of supported functions please see gvtrack.create and gvtrack.array.slice functions.

3.3.3 Administrating Virtual Tracks

As desribed in the previous chapter virtual tracks define a set of rules of how to access and proceed the values
of the ”source” object. The connection between the virtual track and the source object is done via ”soft link”,
i.e. by name and not by reference. For example, a virtual track will continue to exist until explicitly removed
by gvtrack.rm even if the physical track that it is pointing to is deleted or renamed.

Operations such as gdb.init and gdir.cd alter the list of available tracks and intervals sets. Since these
objects are referenced by virtual tracks, these latter are always defined in the context of the current working
directory in Genomic Database (not to be confused with shell’s current working directory). Changing the
current working directory using gdb.init or gdir.cd will also change the list of available virtual tracks.

Another issue to bare in mind is that unlike regular tracks whose data is stored on disk virtual tracks
are non-persistent objects in current R environment. Their definition is stored in GVTRACKS R variable.
In particular a virtual track named ”vtrack” that was created within a context of ”/home/user/trackdb”
Genomic Database working directory would reside in GVTRACKS[["/home/user/trackdb"]][["vtrack"]].
One can also use gvtrack.info function that provides a more convenient access to virtual track definitons.

As the virtual tracks are stored in an R variable their behavior hence complies with the rules of other R
variables: a virtual track defined by one user will not be seen by another one, virtual tracks might dissapear
once R is relaunched, etc.

10

To preserve the definition of virtual tracks between the sessions one would need to save GVTRACKS variable
on disk. The serialization of GVTRACKS is under user’s responsibility. The standard suit of functions for saving
/ loading R variables can be used for that purpose.

Note that if GVTRACKS is loaded from a file or changed manually by a user the auto-completion list (in
case it is turned on) might need to be refreshed by calling gdb.reload.

3.3.4 Track Expression Evaluation under Optimization

Previously we described how a track expression "mytrack * 3" (where mytrack is a track name) leads to
an implicit definition of mytrack variable in R environment. To make our explanation easier we presented
this variable as a scalar whose value is altered each time the iterator interval changes. It’s time to admit
that that was oversimplification. In reality the library defines mytrack variable as a vector (i.e. an array)
and not as a single scalar. The vector is filled then with the corresponding values of the track. Finally the
track expression is evaluated in R and the result is expected to be also a vector of the same size as mytrack
vector. Working with vectors rather than single scalars reduces the number of evaluations within R and
hence improves run-times.

The size of the vector is controlled via gbuf.size option. By default it equals to 1000. Altering this
value (for instance setting it to 1) might significantly affect the run-time of various functions in the library.
If you still wish to force the functions to define scalars rather than vectors, set gbuf.size to 1:

options(gbuf.size = 1)

One might wonder why should we care about the fact that mytrack is not a scalar but rather a vector?
Indeed in many cases it does not really matter. For example mytrack * 3 expression produces exactly the
same results regardless whether mytrack is defined internally as a vector or as a scalar. This is due to the
fact that the expression V * 3 (V stands for a vector) results in each value of V being multiplied by 3.

Multiplication is a good example of ”parallel”operation in R (works on each element in vector separatedly).
On contrary some functions that accept a vector might return a scalar rather than a vector. Such is, for
example, min function.

Let’s look at the following track expression: track1 + min(track1, track2). This expression was
probably meant to produce a sum of track1 track and a minimum value between track1 and track2 tracks
for each iterator interval. However the library defines the variables track1 and track2 to be vectors of
gbuf.size size (by default: 1000). min is not a ”parallel” operation. Given two vectors of any size it returns
a single scalar that is the minimal value of all values in both of the vectors. Therefore track1 + min(track1,

track2) will be interpreted as track1 + M, where M is minimum of 2000 values (1000 values from track1

track, and another 1000 - from track2 track). We can hardly imagine that a user would have really meant
this! Sadly enough the expression will be seamlessly evaluated and produce a valid, but meaningless result.
The solution for our example is to use pmin rather than min function.

The library always verifies that the evaluation of the track expression produces a vector of the same size
as the size of a track variable. In many cases this procedure is able to reveal faulty track expressions. Yet in
more tricky examples like the one that we used before the library will not warn the user.

Make sure your track expressions work correctly on vectors!

3.3.5 Revealing Current Iterator Interval

During the evaluation of a track expression one can access a specially defined variable named GITERATOR.INTERVALS.
This variable contains a set of iterator intervals for which the track expression is evaluated. GITERATOR.INTERVALS
contains the same number of intervals as the size of mytrack vector from our previous example. The value
of a track mytrack for an interval i is stored at mytrack[i].

Note that some intervals in GITERATOR.INTERVALS might have a start coordinate equal to -1. Skip those
intervals and the values of mytrack at the corresponding index.

11

3.3.6 Iterators

So far we have discussed in details how the track expression is evaluated given the iterator interval. Yet how
the iterator intervals can be controlled?

Most of the functions that accept track expressions have an additional parameter named iterator. The
value of this parameter determines the iterator intervals which is also sometimes called an iterator policy :

12

Value Iterator Policy
Type

Example Description

Integer Fixed Bin 50 Iterator intervals will ad-
vance by a fixed step (bin)
starting from zero coordi-
nate up to chromosome’s
length: [0,50), [50,100),

[100,150), ...

Dense track Fixed Bin "dense_track" Use the bin size of the track
as a fixed step.

1D intervals 1D Intervals "annotations" Iterate over the supplied inter-
vals. Note: the intervals are
sorted and overlapping inter-
vals are unified.

Sparse track 1D Intervals "sparse_track" Iterate over the intervals of a
sparse track.

Array track 1D Intervals "array_track" Iterate over the intervals of an
array track.

c(integer, integer) 2D Intervals c(1000, 2000) 2D iterator intervals will cover
the whole 2D chromosomal
space by rectangles of fixed
size: Width X Height. Please
keep in mind that small rect-
angles used without a limiting
scope might result in immense
number of iterator intervals.

2D intervals 2D Intervals gintervals.2d(c(1, 2)) Iterate over the supplied inter-
vals. Note: the intervals are
sorted and overlapping is for-
bidden.

Rectangles track 2D Intervals "rects_track" Iterate over the intervals of a
Rectangles track

Cartesian grid it-
erator

2D Intervals giterator.cartesian_grid(

intervals1, intervals2,

c(10, 20, 30))

Iterate over 2D
cartesian grid (see
giterator.cartesian_grid

function)

NULL Fixed Bin OR
1D Intervals OR
2D Intervals

NULL Implicitly determine the it-
erator policy based on the
tracks that appear in the
track expression. If no track
names presented or two differ-
ent tracks determine different
iterator policy, an error is re-
ported.

13

3.3.7 Scope

Many functions that accept a track expressions and iterator policy accept an additional set of intervals that
limit the scope of a function. This scope also limits the iterator intervals. For instance:

> gextract("dense_track", gintervals(2, 340, 520))

chrom start end dense_track intervalID

1 chr2 340 350 0.14 1

2 chr2 350 400 0.08 1

3 chr2 400 450 0.16 1

4 chr2 450 500 0.00 1

5 chr2 500 520 0.16 1

As one can notice the first and the last intervals in the result are truncated by the scope [340, 520).
In some cases the combination of iterator policy and scope might result in nontrivial set of iterator

intervals. Use giterator.intervals function to retrieve the iterator intervals given a track expression,
scope and an iterator.

3.3.8 Band

As explained before track expression iterator can be determined implicitly or through an iterator parameter.
In either case the result is a set of 1D or 2D intervals depending on how the iterator was defined. If iterator
intervals are 2D an additional filter can be applied to them: a band.

A band is a pair of integers: D1, D2. We say that a 2D iterator interval (chrom1, x1, x2, chrom2, y1, y2)
intersects a band if and only if the next two conditions are true:

1. chrom1 = chrom2

2. ∃x, y : x1 ≤ x < x2 ∧ y1 ≤ y < y2 ∧D1 ≤ x− y < D2.

In a less formal way we can see a band as a space S between two 45-degrees diagonals where D1, D2
determine where these diagonals cross X axis. An iterator interval represents a rectangle in a 2D space and
can be therefore intersected with S. The result of the intersection can be a rectangle, a trapeze, a triangle,
a hexagon or it can be empty if the interval does not intersect with the band. If the intersection is non
empty, the resulted figure, whatever it is, can be bound by some larger rectangle. The rectangle that has
the minimal space and yet containing the intersected shape is called the minimal rectangle.

After the formal definitions it’s time to say how band is actually applied. If the intersection between the
2D iterator interval and the band is non-empty and chrom1 = chrom2, the minimal rectangle replaces the
original iterator interval. Otherwise the iterator interval is skipped as it lies outside of the band or the two
chromosomes are not equal.

gintervals.2d.band_intersect function can help one better understand the concept:

> intervs <- gintervals.2d(1, 200, 800, 1, 100, 1000)

> intervs <- rbind(intervs, gintervals.2d(1, 900, 950, 1, 0, 200))

> intervs <- rbind(intervs, gintervals.2d(1, 0, 100, 1, 0, 400))

> intervs <- rbind(intervs, gintervals.2d(1, 900, 950, 2, 0, 200))

> intervs

chrom1 start1 end1 chrom2 start2 end2

1 chr1 200 800 chr1 100 1000

2 chr1 900 950 chr1 0 200

3 chr1 0 100 chr1 0 400

4 chr1 900 950 chr2 0 200

> gintervals.2d.band_intersect(intervs, band = c(500, 1000))

chrom1 start1 end1 chrom2 start2 end2

1 chr1 600 800 chr1 100 300

2 chr1 900 950 chr1 0 200

14

gintervals.2d.band_intersect intersects the intervals with the band and returns the intervals shrunk
to the minimal rectangle. As you can see we have four different intervals. The first one (chr1, 200, 800,

chr1, 100, 1000) intersects the band and after shrinking to the minimal rectangle it becomes (chr1, 600,

800, chr1, 100, 300). The second interval lies entirely within the band and hence is returned without
any change. The third interval lies entirely outside of the band, and hence is eliminated from the result. The
last interval is coming from two different chromosomes and therefore is also filtered out.

As said band filters out and alters 2D iterator intervals. Yet it also affects the result of 2D tracks. Let’s
look at the following example:

> intervs <- gintervals.2d(1, c(100, 400), c(300, 490), 1, c(120, 180), c(200, 500))

> gtrack.2d.create("test2d", intervs, c(10, 20))

> gextract("test2d", ALLGENOME)

chrom1 start1 end1 chrom2 start2 end2 test2d intervalID

1 chr1 100 300 chr1 120 200 10 1

2 chr1 400 490 chr1 180 500 20 1

> gextract("test2d", ALLGENOME, iterator = gintervals.2d(1, 0, 1000, 1, 0, 1000))

chrom1 start1 end1 chrom2 start2 end2 test2d intervalID

1 chr1 0 1000 chr1 0 1000 16.42857 1

> gintervals.2d.band_intersect(intervs, band = c(150, 1000))

chrom1 start1 end1 chrom2 start2 end2

1 chr1 270 300 chr1 120 150

2 chr1 400 490 chr1 180 340

> gextract("test2d", ALLGENOME, iterator = gintervals.2d(1, 0, 1000, 1, 0, 1000),

band = c(150, 1000))

chrom1 start1 end1 chrom2 start2 end2 test2d intervalID

1 chr1 150 1000 chr1 0 850 19.57182 1

> gtrack.rm("test2d", force = TRUE)

We created a 2D track test2d and inserted two values into it: 10 and 20. If an iterator interval covers
all the track’s rectangles, the resulted value of the track would be a weighted average of its values where the
weight is equal to the intersected area. In our example it is 16.42857.

We added a band then. gintervals.2d.band_intersect shows the minimal rectangles: the intersection
result of the original rectangles with the band. The output of the new gextract has been changed accord-
ingly: the new weights in the weighted average are equal to the new and smaller intersected area. The value
has changed therefore to: 19.57182.

Note, however, that the space used in the calculation of the weighted average is the actual space of the
intersection and not the space occupied by the minimal rectangles!

4 Input Mode and Auto-Completion

By default track expressions, track names, virtual tracks and interval sets are passed to the functions as
character strings. Being good for scripts, this mode is however less appropriate for interactive work in R
where user might miss the ability to use auto-completion of the object names with a TAB key - in a way
similar to how R variables and functions are auto-completed.

gset_input_mode allows the user to pass track expressions, track names, virtual tracks and interval
sets unquoted, i.e. to use them as if they were valid R variables and expressions. In this ”unquoted” (or
”interactive”) mode all the track names, virtual tracks and intervals sets are indeed defined as R variables
(auxiliary variables) which allows them to be auto-completed by TAB. The values of these variables are
meaningless for the user and they should not be altered.

> gset_input_mode(interactive = FALSE) # this is the default mode

> gsummary("dense_track+10")

> gset_input_mode(interactive = TRUE)

> gsummary(dense_track+10)

15

Please beware of the consequences of using interactive mode as it creates a bunch of new variables in R en-
vironment. Though collision with the existing variables is checked at the time of the call to gset_input_mode,
yet nothing prevents the user to modify the value of the auxiliary variables later. This might cause unex-
pected behaviour in some of the package functions. Also the auxiliary variables are automatically undefined
once the interactive mode is switched off. User who mistakenly uses auxiliary variables to store the data
might therefore accidentially loose it.

5 Random Algorithms

Various functions in the library such as gsample make use of pseudo-random number generator. Each time
the function is invoked a unique series of random numbers is issued. Hence two identical calls might produce
different results. To guarantee reproducible results call set.seed before invoking the function.

> set.seed(1)

> r1 <- gsample("dense_track", 10)

> r2 <- gsample("dense_track", 10) # r2 differs from r1

> set.seed(1)

> r3 <- gsample("dense_track", 10) # r3 == r1

6 Multitasking

6.1 Controlling the Number of Processes

To boost the run time performance various functions in the library support multitasking mode, i.e. par-
allel computation of the result by several concurrent processes. The exact number of processes internally
launched depends on the specific call however the upper bound can be controlled by a few parameters such
as gmax.processes (absolute upper bound), gmax.processes2core (maximal number of processes per CPU
core) and gmin.scope4process (minimal scope range / surface assigned to a process). Multitasking can
also be completely switched off by setting gmultitasking parameter to FALSE.

6.2 Limiting the Memory Consumption

For certain functions multitasking might result in higher memory consumption. Users who have per process
virtual memory limit (see: ulimit -v) might be the first to suffer from memory allocation errors.

Various factors can affect the memory usage such as the number of running processes used for parallel
computation, the value of gmax.data.size option or the combination of both. Some of the functions such as
gscreen or gextract consume in multitasking mode amount of memory proportional to gmax.data.size.
Please be aware of it while altering the value of this option.

To limit memory consumption in multitasking mode one might lower down the values of gmax.data.size
and gmax.mem.usage options or even switch off multitasking mode completely. gmax.mem.usage indicates
the upper limit in KB of memory consumed cumulatively by the child processes. Once this limit is breached
an internal mechanism tries to pause some of the running child processes, thereby preventing them from
allocating more memory. The paused processes are resumed once the memory consumption drops or other
sibling processes end.

One should not expect the internal limiting mechanism to be the panacea for memory hungry tasks. First,
the memory consumption of some of the functions is proportional to gmax.data.size option regardless of
the number of running processes. Second, even when the memory limit is exceeded at least one process is
still left to run and to potentially increase the memory consumption further. Third, the mechanism is mainly
periodic, i.e. excessive memory consumption is detected only once in a while. The decision to pause running
processes is thus periodic as well. The memory that has already been consumed in the time gap between the
checks will not be release up until the whole task is complete.

It is worth to say a word about memory consumption. Deducting real memory usage of the process
based on ”top”, ”ps” or other utilities of similar kind might be highly misleading. Since all the processes are
spawned from R, their memory usage as reported by these utilities will be at least as high as that of their

16

parent process. If, for example, R process uses 5 Gb of memory and 10 processes are spawned from it, the
virtual memory of all these 11 processes will top 55 Gb. Yet the majority of the consumed memory will be
shared and unless the child processes start modifying this memory or allocating new one, the physical free
memory of the machine will remain almost unaltered. The internal memory consumption limiting mechanism
tries to estimate the drop of system free memory and hence deducts its data from counting ”Private Dirty”
bytes (on Linux) or from internal estimation (on other platforms) - a very different datum from what ”top”
is reporting.

6.3 Other Considerations

In multitasking mode the return value of gquantiles may vary depending on the number of CPU cores.
For more details please refer the documentation of this function.

17

