
 
 
 
 

Entrez Direct Reference
 
 
 
 
 

Searching, Retrieving, and Parsing Data from NCBI  
 

Databases through the Unix Command Line

Table of Contents

Introduction	 3
Programmatic Access	 3
Navigation Functions	 3
Discovery by Navigation	 4
XML Data Extraction	 5
Format Customization	 5
Exploration Control	 5
Nested Exploration	 6
Conditional Execution	 7
Saving Data in Variables	 7
Sequence Qualifiers	 8
Genes in a Region	 8
Genes in a Pathway	 9
Gene Sequence	 9
Recursive Definitions	 10
Heterogeneous Objects	 11
Indexed Fields	 12
Local PubMed Cache	 12
Local Search Index	 13
Rapidly Scanning PubMed	 15
Identifier Conversion	 16
Natural Language Processing	 16
Integration with Entrez	 17
External Services	 17
JSON to XML	 18
Tables to XML	 19
XML Namespaces	 19
Installation	 19
Documentation	 20

Introduction

Entrez Direct (EDirect) provides access to the NCBI's suite of interconnected databases from a Unix
terminal window. Search terms are entered as command-line arguments. Individual operations are
connected with Unix pipes to allow construction of multi-step queries. Selected records can then be
retrieved in a variety of formats.

EDirect also includes an argument-driven utility that simplifies the extraction of results in structured
XML or JSON format, and a program that builds a URL from command-line arguments for easy
access to external CGI data services. These can eliminate the need for writing custom software to
answer ad hoc questions.

Queries can move seamlessly between EDirect programs and Unix utilities or scripts to perform actions
that cannot be accomplished entirely within Entrez.

Programmatic Access

EDirect connects to Entrez through the Entrez Programming Utilities interface. It supports searching
by indexed terms, looking up precomputed neighbors or links, filtering results by date or category, and
downloading record summaries or reports.

EDirect navigation programs (esearch, elink, efilter, and efetch) communicate by means of a small
structured message, which can be passed invisibly between operations with a Unix pipe. The message
includes the current database, so it does not need to be given as an argument after the first step.

All EDirect programs are designed to work on large sets of data. Intermediate results are stored on the
Entrez history server. For best performance, obtain an API Key from NCBI, and place the following
line in your .bash_profile configuration file:

 export NCBI_API_KEY=unique_api_key_goes_here

Each program also has a -help command that prints detailed information about available arguments.

Navigation Functions

Esearch performs a new Entrez search using terms in indexed fields. It requires a -db argument for the
database name and uses -query to obtain the search terms. For PubMed, without field qualifiers, the
server uses automatic term mapping to compose a search strategy by translating the supplied query:

 esearch -db pubmed -query "selective serotonin reuptake inhibitor"

Search terms can also be qualified with bracketed field names:

 esearch -db nucleotide -query "insulin [PROT] AND rodents [ORGN]"

Elink looks up precomputed neighbors within a database, or finds associated records in other databases:

 elink -related  
 
 elink -target gene

3

or can follow PubMed references in the NIH Open Citation Collection dataset (see PMID 31600197):

 elink -cited  
 
 elink -cites

Efilter limits the results of a previous query, with shortcuts that can also be used in esearch:

 efilter -molecule genomic -location chloroplast -country sweden -days 365

Efetch downloads selected records or reports in a designated format:

 efetch -format abstract

Individual query commands are connected by a Unix vertical bar pipe symbol:

 esearch -db pubmed -query "tn3 transposition immunity" | efetch -format medline

Discovery by Navigation

PubMed related articles are calculated by a statistical text retrieval algorithm using the title, abstract,
and medical subject headings (MeSH terms). The connections between papers can be used for making
discoveries. A simple example is finding the last enzymatic step in the vitamin A biosynthetic pathway.

Lycopene cyclase in plants converts lycopene to β-carotene, the immediate precursor of vitamin A. An
initial search on the enzyme finds 246 articles. Looking up precomputed neighbors:

 esearch -db pubmed -query "lycopene cyclase" | 
 elink -related |

returns 14,958 PubMed papers, some of which might be expected to discuss adjacent steps in the
pathway. Since plants cannot convert β-carotene to retinal, we first link to proteins, finding 391,755
sequence records (each of which has standardized organism information from the NCBI taxonomy).
Next we restrict those results to animals, to eliminate earlier steps in the pathway. Limiting to curated
proteins in mice matches 25 records:

 elink -target protein |  
 efilter -organism mouse -source refseq |

This is small enough to examine individually, so we retrieve the records in FASTA format:

 efetch -format fasta

As anticipated, the results include the enzyme that splits β-carotene into two molecules of retinal:

 ...  
 >NP_067461.2 beta,beta-carotene 15,15'-dioxygenase isoform 1 [Mus musculus] 
 MEIIFGQNKKEQLEPVQAKVTGSIPAWLQGTLLRNGPGMHTVGESKYNHWFDGLALLHSFSIRDGEVFYR 
 SKYLQSDTYIANIEANRIVVSEFGTMAYPDPCKNIFSKAFSYLSHTIPDFTDNCLINIMKCGEDFYATTE 
 TNYIRKIDPQTLETLEKVDYRKYVAVNLATSHPHYDEAGNVLNMGTSVVDKGRTKYVIFKIPATVPDSKK 
 ...

The entire set of commands runs in 8 seconds. There is no need to use a script to loop over records one
at a time, or write code to retry after a transient network failure, or add a time delay between requests.
All of these features are already built into the EDirect commands.

4

XML Data Extraction

The ability to obtain Entrez records in structured format, and to easily extract the underlying data,
allows the user to ask novel questions that are not addressed by existing analysis software.

The xtract program uses command-line arguments to direct the conversion of XML data into a more
tractable form. The -pattern command partitions an XML stream into individual records that are
processed separately. Within each record, the -element command does an exhaustive, depth-first
search to find data content by field name. Explicit paths to objects are not needed.

Selection commands are derivatives of -element. These include positional commands (-first and -last),
numeric operations (including -num, -len, -inc, -sum, -min, -max, and -avg), text processing
variants (such as -encode, -plain, -upper, -title, and -words), and functions that perform sequence
or coordinate conversion (-revcomp, -0-based, -1-based, and -ucsc-based).

Format Customization

By default, the -pattern argument divides the results into rows, while placement of data into columns is
controlled by -element, to create a tab-delimited table.

Formatting commands allow extensive customization of the output. The line break between -pattern
output rows can be changed with -ret, and the tab character between -element fields can be replaced
by -tab. The -sep argument is used to distinguish multiple elements of the same type, and controls
their separation independently of the -tab command. The following query:

 efetch -db pubmed -id 6271474,6092233,16589597 -format docsum | 
 xtract -pattern DocumentSummary -sep "|" -element Id PubDate Name

returns a table with individual author names separated by vertical bars:

 6271474 1981 Casadaban MJ|Chou J|Lemaux P|Tu CP|Cohen SN 
 6092233 1984 Jul-Aug Calderon IL|Contopoulou CR|Mortimer RK 
 16589597 1954 Dec Garber ED

The -def command sets a default placeholder to be printed when an -element field is not present.

Exploration Control

Exploration commands provide fine control over the order in which XML record contents are
examined, by presenting each instance of a selected subregion separately. This limits what subsequent
commands "see", and allows related fields in an object to be kept together.

In contrast to the simpler DocumentSummary format, records retrieved as PubmedArticle XML:

 efetch -db pubmed -id 1413997 -format xml |

have authors with separate fields for last name and initials:

 <Author>  
 <LastName>Mortimer</LastName>  
 <Initials>RK</Initials>  
 </Author>

5

Without being given any guidance about context, an -element command on initials and last names:

 xtract -pattern PubmedArticle -element Initials LastName

will explore the current record for each argument in turn, and thus print all author initials followed by
all author last names:

 RK CR JS Mortimer Contopoulou King

Inserting a -block command redirects data exploration to present each author one at a time. The
subsequent -element command only sees the current author's values:

 xtract -pattern PubmedArticle -block Author -element Initials LastName

which restores the correct association of initials and last names:

 RK Mortimer CR Contopoulou JS King

The -sep value also applies to unrelated -element arguments that are grouped with commas:

 xtract -pattern PubmedArticle \  
 -block Author -sep " " -tab ", " -element Initials,LastName

allowing -sep -and -tab to produce a more desirable formatting of author names:

 RK Mortimer, CR Contopoulou, JS King

Nested Exploration

Exploration command names (-group, -block, and -subset) are assigned to a precedence hierarchy:

 -pattern > -group > -block > -subset > -element

and are combined in ranked order to control object iteration at progressively deeper levels in the XML
data structure. Each command argument acts as a "nested for-loop" control variable, retaining
information about the context, or state of exploration, at its level.

(Hypothetical) census data would need several nested loops to visit each unique address in context:

 -pattern State -group City -block Street -subset Number -element Resident

MeSH terms can have their own unique set of qualifiers, with a major topic attribute on each object:

 <MeshHeading>  
 <DescriptorName MajorTopicYN="N">beta-Galactosidase</DescriptorName> 
 <QualifierName MajorTopicYN="Y">genetics</QualifierName> 
 <QualifierName MajorTopicYN="N">metabolism</QualifierName> 
 </MeshHeading>

Since -element does its own exploration for objects within its current scope, a -block command:

 -block MeshHeading -sep " / " -element DescriptorName,QualifierName

is sufficient for grouping each MeSH name with its qualifiers:

 beta-Galactosidase / genetics / metabolism
6

Adding -subset commands within the -block visits each individual descriptor or qualifier object on the
current MeSH term:

 efetch -db pubmed -id 6162838 -format xml | 
 xtract -transform <(echo -e "Y\t*\n") \ 
 -pattern PubmedArticle -element MedlineCitation/PMID \ 
 -block MeshHeading -clr \  
 -subset DescriptorName -plg "\n" -tab "" \ 
 -translate "@MajorTopicYN" -element DescriptorName \ 
 -subset QualifierName -plg " / " -tab "" \ 
 -translate "@MajorTopicYN" -element QualifierName

and keeps major topic attributes associated with their parent objects. A text translation command
converts the "Y" attribute value to an asterisk for printing:

 6162838  
 Base Sequence  
 *DNA, Recombinant  
 Escherichia coli / genetics  
 ...  
 RNA, Messenger / *genetics  
 Transcription, Genetic  
 beta-Galactosidase / *genetics / metabolism

(Note that "-element MedlineCitation/PMID" uses the parent-slash-child construct to prevent the
display of additional PMID items that may be present later in CommentsCorrections objects.)

Conditional Execution

Conditional processing commands (-if, -unless, -and, -or, and -else) restrict exploration by object
name and value. These may be used in conjunction with string or numeric constraints:

 esearch -db pubmed -query "Casadaban MJ [AUTH]" | 
 efetch -format xml |  
 xtract -pattern PubmedArticle -if "#Author" -lt 6 \ 
 -block Author -if LastName -is-not Casadaban \ 
 -sep ", " -tab "\n" -element LastName,Initials | 
 sort-uniq-count-rank

to select papers with fewer than 6 authors and print a table of the most frequent coauthors:

 11 Chou, J  
 8 Cohen, SN  
 7 Groisman, EA  
 ...

Saving Data in Variables

A value can be recorded in a variable and used wherever needed. Variables are created by a hyphen
followed by a name consisting of a string of capital letters or digits (e.g., -PMID). Values are retrieved
by placing an ampersand before the variable name (e.g., "&PMID") in an -element statement:

 efetch -db pubmed -id 3201829,6301692,781293 -format xml | 
 xtract -pattern PubmedArticle -PMID MedlineCitation/PMID \ 
 -block Author -element "&PMID" \  
 -sep " " -tab "\n" -element Initials,LastName

7

producing a list of authors, with the PubMed Identifier in the first column of each row:

 3201829 JR Johnston  
 3201829 CR Contopoulou  
 3201829 RK Mortimer  
 6301692 MA Krasnow  
 6301692 NR Cozzarelli  
 781293 MJ Casadaban

The variable can be used even though the original object is no longer visible inside the -block section.

Sequence Qualifiers

The NCBI represents sequence records in a data model based on the central dogma of molecular
biology. A sequence can have multiple features, which contain information about the biology of a given
region, including the transformations involved in gene expression. Each feature can have multiple
qualifiers, which store specific details about that feature (e.g., name of the gene, genetic code used for
translation, accession of the product sequence).

The data hierarchy is explored using a -pattern {sequence} -group {feature} -block {qualifier}
construct. As a convenience, an -insd helper function generates the appropriate nested extraction
commands from feature and qualifier names on the command line. For example, processing the results
of a search on cone snail venom:

 esearch -db protein -query "conotoxin" -feature mat_peptide | 
 efetch -format gpc |  
 xtract -insd complete mat_peptide "%peptide" product mol_wt peptide | 
 grep -i conotoxin | sort -t $'\t' -u -k 2,2n

returns the accession, peptide length, product name, calculated molecular weight, and sequence for a
sample of neurotoxic peptides:

 ADB43131.1 15 conotoxin Cal 1b 1708 LCCKRHHGCHPCGRT 
 ADB43128.1 16 conotoxin Cal 5.1 1829 DPAPCCQHPIETCCRR 
 AIC77105.1 17 conotoxin Lt1.4 1705 GCCSHPACDVNNPDICG 
 ADB43129.1 18 conotoxin Cal 5.2 2008 MIQRSQCCAVKKNCCHVG 
 ADD97803.1 20 conotoxin Cal 1.2 2206 AGCCPTIMYKTGACRTNRCR 
 AIC77085.1 21 conotoxin Bt14.8 2574 NECDNCMRSFCSMIYEKCRLK 
 ADB43125.1 22 conotoxin Cal 14.2 2157 GCPADCPNTCDSSNKCSPGFPG 
 AIC77154.1 23 conotoxin Bt14.19 2578 VREKDCPPHPVPGMHKCVCLKTC 
 ...

Genes in a Region

To list all genes between two markers flanking the human X chromosome centromere, first retrieve the
chromosome record:

 esearch -db gene -query "Homo sapiens [ORGN] AND X [CHR]" | 
 efilter -status alive -type coding | efetch -format docsum |

Gene names and chromosomal positions are extracted by piping the record to:

 xtract -pattern DocumentSummary -NME Name -DSC Description \ 
 -block GenomicInfoType -if ChrLoc -equals X \ 
 -min ChrStart,ChrStop -element "&NME" "&DSC" |

8

Exploring each GenomicInfoType is needed because of pseudoautosomal regions at the ends of the X
and Y chromosomes. Without limiting to chromosome X, the copy of IL9R near the "q" telomere of
chromosome Y would be erroneously placed with genes that are near the X chromosome centromere.

Results can now be sorted, filtered, and passed to the between-two-genes script:

 sort -k 1,1n | cut -f 2- |  
 grep -v pseudogene | grep -v uncharacterized | 
 between-two-genes AMER1 FAAH2

to produce a table of known genes located between the two markers:

 FAAH2 fatty acid amide hydrolase 2 
 SPIN2A spindlin family member 2A 
 ZXDB zinc finger X-linked duplicated B 
 NLRP2B NLR family pyrin domain containing 2B 
 ZXDA zinc finger X-linked duplicated A 
 SPIN4 spindlin family member 4 
 ARHGEF9 Cdc42 guanine nucleotide exchange factor 9 
 AMER1 APC membrane recruitment protein 1

Genes in a Pathway

A gene can be linked to the biochemical pathways in which it participates:

 esearch -db gene -query "PAH [GENE]" -organism human | 
 elink -target biosystems |  
 efilter -pathway wikipathways |

Linking from a pathway record back to the gene database:

 elink -target gene |  
 efetch -format docsum |  
 xtract -pattern DocumentSummary -element Name Description | 
 grep -v pseudogene | grep -v uncharacterized | 
 sort -f

returns the set of all genes known to be involved in the pathway:

 AANAT aralkylamine N-acetyltransferase 
 ACADM acyl-CoA dehydrogenase medium chain 
 ACHE acetylcholinesterase (Cartwright blood group) 
 ADCYAP1 adenylate cyclase activating polypeptide 1 
 ...

Gene Sequence

Genes encoded on the minus strand of a sequence:

 esearch -db gene -query "DDT [GENE] AND mouse [ORGN]" | 
 efetch -format docsum |  
 xtract -pattern GenomicInfoType -element ChrAccVer ChrStart ChrStop |

have coordinates where the start position is greater than the stop:

 NC_000076.6 75773373 75771232

9

These can be read by a "while" loop:

 while IFS=$'\t' read acn str stp  
 do  
 efetch -db nucleotide -format gb \  
 -id "$acn" -chr_start "$str" -chr_stop "$stp" 
 done

to return the reverse-complemented subregion in GenBank format:

 LOCUS NC_000076 2142 bp DNA linear CON 08-AUG-2019 
 DEFINITION Mus musculus strain C57BL/6J chromosome 10, GRCm38.p6 C57BL/6J. 
 ACCESSION NC_000076 REGION: complement(75771233..75773374) 
 VERSION NC_000076.6  
 ...  
 FEATURES Location/Qualifiers 
 source 1..2142  
 /organism="Mus musculus" 
 /mol_type="genomic DNA" 
 /strain="C57BL/6J" 
 /db_xref="taxon:10090" 
 /chromosome="10" 
 gene 1..2142  
 /gene="Ddt"  
 mRNA join(1..159,462..637,1869..2142) 
 /gene="Ddt"  
 /product="D-dopachrome tautomerase" 
 /transcript_id="NM_010027.1" 
 CDS join(52..159,462..637,1869..1941) 
 /gene="Ddt"  
 /codon_start=1 
 /product="D-dopachrome decarboxylase" 
 /protein_id="NP_034157.1" 
 /translation="MPFVELETNLPASRIPAGLENRLCAATATILDKPEDRVSVTIRP 
 GMTLLMNKSTEPCAHLLVSSIGVVGTAEQNRTHSASFFKFLTEELSLDQDRIVIRFFP 
 ...

The reverse complement of a plus-strand sequence range can be selected with efetch -revcomp.

Recursive Definitions

When a recursively defined object is given to an exploration command:

 efetch -db taxonomy -id 9606,7227,10090 -format xml | 
 xtract -pattern Taxon -element TaxId ScientificName

the -element command only examines fields in the outermost objects:

 9606 Homo sapiens  
 7227 Drosophila melanogaster  
 10090 Mus musculus

The star-slash-child construct will descend a single level into the hierarchy:

 efetch -db taxonomy -id 9606,7227,10090 -format xml | 
 xtract -pattern Taxon -block "*/Taxon" \ 
 -if Rank -is-not "no rank" \  
 -tab "\n" -element TaxId,Rank,ScientificName

10

to print data on the individual lineage objects:

 2759 superkingdom Eukaryota  
 33208 kingdom Metazoa  
 7711 phylum Chordata  
 89593 subphylum Craniata  
 8287 superclass Sarcopterygii 
 40674 class Mammalia  
 ...

Recursive objects can be fully explored with a double-star-slash-child construct:

 esearch -db gene -query "rbcL [GENE] AND maize [ORGN]" | 
 efetch -format xml |  
 xtract -pattern Entrezgene -block "**/Gene-commentary" \

Metadata annotated in an attribute:

 <Gene-commentary_type value="genomic">1</Gene-commentary_type>

is selected with an "at" sign before the attribute name:

 -if Gene-commentary_type@value -equals genomic \ 
 -tab "\n" -element Gene-commentary_accession | 
 sort | uniq

This prints every genomic accession regardless of nesting depth:

 NC_001666  
 X86563  
 Z11973

Heterogeneous Objects

The nquire program uses command-line arguments to request data from external CGI services. A
query on curated biological database associations:

 nquire -get http://mygene.info/v3/gene/2652 | 
 xtract -j2x -set - -rec GeneRec |

returns data containing a heterogeneous mixture of objects in the pathway section:

 <pathway>  
 <reactome>  
 <id>R-HSA-162582</id>  
 <name>Signal Transduction</name> 
 </reactome>  
 ...  
 <wikipathways>  
 <id>WP455</id>  
 <name>GPCRs, Class A Rhodopsin-like</name> 
 </wikipathways>  
 </pathway>

The parent-slash-star construct is used to visit the individual components of a parent object without
needing to explicitly specify their names. For printing, the name of a child object is indicated by a
question mark:

11

 xtract -pattern GeneRec -group "pathway/*" \ 
 -pfc "\n" -element "?,name,id"

This displays a table of pathway database references:

 reactome Signal Transduction R-HSA-162582 
 reactome Disease R-HSA-1643685 
 ...  
 reactome Diseases of signal transduction R-HSA-5663202 
 wikipathways GPCRs, Class A Rhodopsin-like WP455

Indexed Fields

Entrez can report the fields and links that are indexed for each database. For example:

 einfo -db protein -fields

will return a table of field abbreviations and names indexed for proteins:

 ACCN Accession  
 ALL All Fields  
 ASSM Assembly  
 AUTH Author  
 BRD Breed  
 CULT Cultivar  
 DIV Division  
 ECNO EC/RN Number  
 FILT Filter  
 FKEY Feature key  
 GENE Gene Name  
 ...

Local PubMed Cache

Fetching data from Entrez works well when a few thousand records are needed, but it does not scale for
much larger sets of data, where the time it takes to download becomes a limiting factor. EDirect can
now preload all 30 million PubMed records onto an inexpensive external 500 GB solid state drive for
rapid retrieval.

For example, PMID 12345678 would be stored (as a compressed XML file) at:

 /Archive/12/34/56/12345678.xml.gz

using a hierarchy of folders to organize the data for random access to any record.

Set an environment variable in your .bash_profile configuration file to reference your external drive:

 export EDIRECT_PUBMED_MASTER=/Volumes/external_disk_name_goes_here

and run:

 archive-pubmed

to download the PubMed release files and distribute each record on the drive. This process will take
several hours to complete, but subsequent updates are incremental, and should finish in minutes.

12

The local archive is a completely self-contained, turnkey system, with no need for the user to download
and configure complicated third-party database software.

Retrieving a PubmedArticleSet containing over 120,000 PubMed records from the local archive:

 esearch -db pubmed -query "PNAS [JOUR]" -pub abstract | 
 efetch -format uid | stream-pubmed | gunzip -c |

takes about 15 seconds. Retrieving those records from NCBI's network service, with efetch -format xml,
would take around 40 minutes.

Even moderately large sets of PubMed query results can benefit from using the local cache. A reverse
citation lookup on 191 papers:

 esearch -db pubmed -query "Cozzarelli NR [AUTH]" | elink -cited |

requires 5 seconds to match 7156 subsequent articles. Fetching them from the local archive:

 efetch -format uid | fetch-pubmed |

is practically instantaneous. Printing the names of all authors in those records:

 xtract -pattern PubmedArticle -block Author \ 
 -sep " " -tab "\n" -element LastName,Initials |

allows creation of a frequency table:

 sort-uniq-count-rank

that lists the authors who most often cited the original papers:

 112 Cozzarelli NR  
 73 Maxwell A  
 56 Wang JC  
 49 Osheroff N  
 48 Stasiak A  
 ...

Fetching from the network service would extend the 7 second running time by 2 minutes.

Local Search Index

A similar divide-and-conquer strategy is used to create a local information retrieval system suitable for
large data mining queries. Run:

 index-pubmed

to populate retrieval index files from records stored in the local archive. This will also take a few hours.

For PubMed titles and primary abstracts, the indexing process deletes hyphens after specific prefixes,
removes accents and diacritical marks, splits words at punctuation characters, corrects encoding
artifacts, and spells out Greek letters for easier searching on scientific terms. It then prepares inverted
indices with term positions, and uses them to build distributed term lists and postings files.

13

For example, the term list that includes "cancer" would be located at:

 /Postings/NORM/c/a/n/c/canc.trm

A query on cancer thus only needs to load a very small subset of the total index. This design allows
efficient expression evaluation, unrestricted wildcard truncation, phrase queries, and proximity
searches.

The phrase-search script provides access to the local search system. The full set of indexed terms,
without record counts, can be printed for any field:

 phrase-search -terms NORM

In local queries, a trailing asterisk is used to indicate term truncation:

 phrase-search -count "catabolite repress*"

Using -counts returns expanded terms and individual postings counts:

 phrase-search -counts "catabolite repress*"

Query evaluation includes Boolean operations and parenthetical expressions:

 phrase-search -query "(literacy AND numeracy) NOT (adolescent OR child)"

Adjacent words in the query are treated as a contiguous phrase:

 phrase-search -query "selective serotonin reuptake inhibit*"

More inclusive searches can use the Porter2 stemming algorithm:

 phrase-search -query "monoamine oxidase inhibitor [STEM]"

Each plus sign will replace a single word inside a phrase:

 phrase-search -query "vitamin c + + common cold"

Runs of tildes indicate the maximum distance between phrases:

 phrase-search -query "vitamin c ~ ~ common cold"

MeSH hierarchy code and year of publication are also indexed:

 phrase-search -query "C14.907.617.812* [TREE] AND 2015:2019 [YEAR]"

An exact match can search for all or part of a title or abstract:

 phrase-search -exact "Genetic Control of Biochemical Reactions in Neurospora."

All query commands return a list of PMIDs, which can be piped directly to fetch-pubmed to retrieve
the records. For example:

14

 phrase-search -query "selective serotonin ~ ~ ~ reuptake inhibitor*" | 
 fetch-pubmed |  
 xtract -pattern PubmedArticle -num Author | 
 sort-uniq-count -n |  
 reorder-columns 2 1 |  
 head -n 25 |  
 tee /dev/tty |  
 xy-plot auth.png

performs a proximity search with dynamic wildcard expansion (matching phrases like "selective
serotonin and norepinephrine reuptake inhibitors") and fetches 12,170 PubMed records from the local
archive. It then counts the number of authors for each paper, printing a frequency table of the number
of papers per number of coauthors:

 0 49  
 1 1350  
 2 1827  
 3 1835  
 4 1661  
 5 1457  
 6 1133  
 7 907  
 8 597  
 9 408  
 ...

and creating a visual graph of the data. The entire set of commands runs in under 4 seconds.

The phrase-search and fetch-pubmed scripts are front-ends to the rchive program, which is used to
build and search the inverted retrieval system. Rchive is multi-threaded for speed, and can match
several PubMed titles per second, fetching the positional indices for all terms in parallel before
evaluating the title words as a contiguous phrase.

Rapidly Scanning PubMed

If the expand-current script is run after archive-pubmed or index-pubmed, an ad hoc scan can be
performed on the entire set of live PubMed records:

 cat $EDIRECT_PUBMED_MASTER/Current/*.xml | 
 xtract -timer -pattern PubmedArticle \  
 -if "#Author" -eq 7 \  
 -element MedlineCitation/PMID LastName

in this case finding articles with seven authors. (Author count is not indexed by Entrez or locally by
EDirect.)

Xtract uses the Boyer-Moore-Horspool algorithm to partition an XML stream into individual records,
sending them down a thread-safe communication channel to be distributed among multiple instances
of the data exploration and extraction function. On a modern six-core computer, it can process the full
scan of all 30 million PubMed records in just under 4 minutes, a sustained rate of over 125,000 records
per second.

15

Identifier Conversion

The index-pubmed script also downloads MeSH descriptor information from NLM and creates a
conversion file:

 ...  
 <Rec>  
 <Code>D064007</Code>  
 <Name>Ataxia Telangiectasia Mutated Proteins</Name> 
 <Tree>D08.811.913.696.620.682.700.097</Tree> 
 <Tree>D12.776.157.687.125</Tree>  
 <Tree>D12.776.660.720.125</Tree>  
 </Rec>  
 ...

that can be used for mapping MeSH codes to and from chemical or disease names. For example:

 cat $EDIRECT_PUBMED_MASTER/Data/meshconv.xml | 
 xtract -pattern Rec \  
 -if Name -starts-with "ataxia telangiectasia" \ 
 -element Code

will return:

 C565779  
 C576887  
 D001260  
 D064007

The meshconv.xml file is prepared by use of the xtract -wrp command:

 cat desc2020.xml |  
 xtract -wrp Set,Rec -pattern DescriptorRecord \ 
 -wrp Code -element DescriptorRecord/DescriptorUI \ 
 -wrp Name -first DescriptorName/String \ 
 -wrp Tree -element TreeNumberList/TreeNumber | 
 xtract -format |  
 xtract -wrp Set -pattern Rec -sort Code

which wraps element contents in new XML tags by issuing several other formatting commands:

 -pfx "<Tree>" -sep "</Tree><Tree>" -sfx "</Tree>"

Natural Language Processing

Additional annotation on PubMed can be downloaded and indexed by running:

 index-extras

NCBI's Biomedical Text Mining Group performs computational analysis of PubMed and PMC papers,
and extracts chemical, disease, and gene references from the article contents (see PMID 31114887).
Along with NLM Gene Reference Into Function mappings (see PMID 14728215), these terms are
indexed in CHEM, DISZ, and GENE fields.

16

Recent research at Stanford defined biological themes, supported by dependency paths, which are
indexed as THME and PATH fields. Theme keys in the Global Network of Biomedical Relationships
are taken from a table in the paper (see PMID 29490008):

 A+ Agonism, activation N Inhibits  
 A- Antagonism, blocking O Transport, channels  
 B Binding, ligand Pa Alleviates, reduces  
 C Inhibits cell growth Pr Prevents, suppresses  
 D Drug targets Q Production by cell population 
 E Affects expression/production Rg Regulation  
 E+ Increases expression/production Sa Side effect/adverse event  
 E- Decreases expression/production T Treatment/therapy  
 G Promotes progression Te Possible therapeutic effect  
 H Same protein or complex U Causal mutations  
 I Signaling pathway Ud Mutations affecting disease course 
 J Role in disease pathogenesis V+ Activates, stimulates  
 K Metabolism, pharmacokinetics W Enhances response  
 L Improper regulation linked to disease X Overexpression in disease  
 Md Biomarkers (diagnostic) Y Polymorphisms alter risk  
 Mp Biomarkers (progression) Z Enzyme activity

Themes common to multiple chemical-disease-gene relationships are disambiguated so they can be
queried individually. The expanded list, along with MeSH category codes and examples of query
automation, can be seen with:

 phrase-search -help

Integration with Entrez

The phrase-search -filter command allows PMIDs to be generated by an EDirect search and then
incorporated as a component in a local query:

 esearch -db pubmed -query "complement system proteins [MESH]" | 
 efetch -format uid |  
 phrase-search -filter "L [THME] AND D10* [TREE]"

This finds PubMed papers about complement proteins and limits them by the "improper regulation
linked to disease" theme and the lipids MeSH chemical category:

 448084  
 1292783  
 1379443  
 1467432  
 1689670  
 ...

Intermediate lists of PMIDs can be saved to a file and piped (with "cat") into a subsequent phrase-
search -filter query, or uploaded to the Entrez history server by piping to:

 epost -db pubmed -format uid

External Services

The experimental xplore script expands the EDirect paradigm to navigate connections in the
biological resources of the BioThings.io data integration project at Scripps Research (see PMID
23175613). A drug repurposing example (see PMID 29390967):

17

 xplore -load hgvs "chr6:g.26093141G>A,chr12:g.111351981C>T" | 
 xplore -link ncbigene |  
 xplore -link wikipathways |  
 xplore -link ncbigene |  
 xplore -link uniprot |  
 xplore -link inchikey |  
 xplore -save uid

runs in 20 seconds and returns 1042 chemicals that might act on gene products in pathways associated
with two diseases, and would thus be potential candidates for treating hereditary hemochromatosis or
hypertrophic cardiomyopathy. There is initial support in xplore -search for -organism and -action
shortcuts, similar to what is available in efilter for Entrez data.

As part of this development, xtract gained a -path exploration command and support for multi-level
object addresses, delimited by periods or slashes:

 xtract -path pathway.wikipathways.id -tab "\n" -element id

JSON to XML

Consolidated gene information retrieved in JSON format:

 nquire -get http://mygene.info/v3 gene 3043 |

contains a multi-dimensional JSON array of exon coordinates:

 "position": [ 
 [ 
 5225463,  
 5225726  
],  
 [ 
 5226576,  
 5226799  
],  
 [ 
 5226929,  
 5227071  
]  
],

This can be converted to XML with xtract -j2x:

 xtract -j2x -set - -rec GeneRec -nest plural |

using "-nest plural" to derive a parent name that keeps the internal structure intact in XML:

 <positions>  
 <position>5225463</position>  
 <position>5225726</position>  
 </positions>  
 ...

Individual exons can then be visited by piping the record through:

 xtract -pattern GeneRec -group exons \  
 -block positions -pfc "\n" -element position

18

to print a tab-delimited table of start and stop positions:

 5225463 5225726  
 5226576 5226799  
 5226929 5227071

Tables to XML

Tab-delimited data is easily converted to XML with xtract -t2x:

 nquire -ftp ftp.ncbi.nlm.nih.gov gene/DATA gene_info.gz | 
 gunzip -c | grep -v NEWENTRY | cut -f 2,3 | 
 xtract -t2x -set Set -rec Rec -skip 1 Code Name

This takes a series of command-line arguments with tag names for wrapping the individual columns,
and skips the first line of input, which contains header information, to generate a new XML file:

 <Set>  
 <Rec>  
 <Code>1246500</Code>  
 <Name>repA1</Name>  
 </Rec>  
 <Rec>  
 <Code>1246501</Code>  
 <Name>repA2</Name>  
 </Rec>  
 <Rec>  
 <Code>1246502</Code>  
 <Name>leuA</Name>  
 </Rec>  
 ...

XML Namespaces

Namespace prefixes are indicated by a colon, and a leading colon matches any prefix:

 nquire -url "http://webservice.wikipathways.org" getPathway -pwId WP455 | 
 xtract -pattern "ns1:getPathwayResponse" -element ":gpml" |

The transmute program can convert Base64-encoded data back to its original binary form:

 transmute -decode64 |

Encoding was used to embed Graphical Pathway Markup Language inside another XML object:

 xtract -pattern Pathway -block Xref \  
 -if @Database -equals "Entrez Gene" \ 
 -tab "\n" -element @ID

Installation

EDirect consists of a set of scripts and programs that are downloaded to the user's computer.

EDirect will run on Unix and Macintosh computers that have the Perl language installed, and under
the Cygwin Unix-emulation environment on Windows PCs.

19

To install the EDirect software, open a terminal window and execute one of the following two
commands:

 sh -c "$(curl -fsSL ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh)" 
 
 sh -c "$(wget -q ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/install-edirect.sh -O -)"

or follow the detailed installation instructions in the EDirect web documentation.

This downloads several scripts into an "edirect" folder in the user's home directory. It then fetches any
missing Perl modules, and installs platform-specific precompiled executables for xtract and rchive.

At the end of this process, the script will ask for permission to add EDirect to your PATH permanently
by editing your configuration file. If you answer "y" it will add:

 export PATH=${PATH}:$HOME/edirect

to the end of your .bash_profile file. If you answer "n", you should then manually edit .bash_profile to
add the edirect folder as one of the components of your existing PATH assignment statement.

Documentation

Documentation for EDirect is on the web at:

 http://www.ncbi.nlm.nih.gov/books/NBK179288

EDirect navigation functions call the URL-based Entrez Programming Utilities:

 https://www.ncbi.nlm.nih.gov/books/NBK25501

NCBI database resources are described by:

 https://www.ncbi.nlm.nih.gov/pubmed/31602479

Information on how to obtain an API Key is described in this NCBI blogpost:

 https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities

Additional sample EDirect queries are available from:

 xtract -examples

Questions or comments on EDirect may be sent to info@ncbi.nlm.nih.gov.

This research was supported by the Intramural Research Program of the National Library of Medicine
at the NIH.

20

	Introduction
	Programmatic Access
	Navigation Functions
	Discovery by Navigation
	XML Data Extraction
	Format Customization
	Exploration Control
	Nested Exploration
	Conditional Execution
	Saving Data in Variables
	Sequence Qualifiers
	Genes in a Region
	Genes in a Pathway
	Gene Sequence
	Recursive Definitions
	Heterogeneous Objects
	Indexed Fields
	Local PubMed Cache
	Local Search Index
	Rapidly Scanning PubMed
	Identifier Conversion
	Natural Language Processing
	Integration with Entrez
	External Services
	JSON to XML
	Tables to XML
	XML Namespaces
	Installation
	Documentation

