
Setup and Tutorial

Alexander P. Christensen, Hudson Golino, Aleksandar Tomašević

August 20, 2024

1. Python setup using setup_miniconda()

transforEmotion uses the reticulate package to automatically install a standalone miniconda version on your
computer and download the necessary Python modules to run the transformer models.

After installing transforEmotion package, you need to run setup_miniconda() function. This function will
performs the following tasks:

1. Install a standalone miniconda version on your computer.
2. Setup a virtual Python environment for transforEmotion package.
3. Install the necessary Python modules to run the transformer models.

By having a standalone miniconda installed through transforEmotion, you should not encounter any conflicts
between miniconda and existing Python installations. It also ensures that the correct version of Python
libraries are installed into the virtual environment, guaranteeing compatibility regardless of your operating
system or whether you already have Python installed.

The miniconda installation process takes a few minutes to complete. At certain points, it may appear
that the installer is stuck, but please allow a few minutes for the installer to finish its process. Remember,
setup_miniconda() only needs to be run once after installing the package. Unless you run into issues with
Python environment and libraries later on, there is no need to run this function again on the same system.

2. Using transformer_scores

You can use any number of Hugging Face text classification transformers. transforEmotion currently
implements only the zero-shot classification models. Future updates to the package may include opportunities
to train and fine-tune these models. For now, there are several options that work well for most classification
tasks straight out-of-the-box. You can view different transformers that can be used in transforEmotion here.

As mentioned in section 1, before running the transformer_scores function, you need to execute
setup_miniconda() to install the necessary modules. Running the transformer_scores function will also
trigger the download of the Cross-Encoder’s DistilRoBERTa transformer model. Therefore, the easiest way
to get started is by using an example.

library(transforEmotion)

Setup Python

setup_miniconda()

Load data

data(neo_ipip_extraversion)

Example text

1

https://huggingface.co
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/cross-encoder/nli-distilroberta-base

text <- neo_ipip_extraversion$friendliness[1:5] # positively worded items only

Run transformer function

transformer_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

)
)

The downloads will take some time when you run a specific model for the first time. Assuming everything
goes well with the code above, you should see output that looks like this:
$`make friends easily`

friendly gregarious assertive active excitement cheerful
0.579 0.075 0.070 0.071 0.050 0.155

$`warm up quickly to others`
friendly gregarious assertive active excitement cheerful

0.151 0.063 0.232 0.242 0.152 0.160

$`feel comfortable around people`
friendly gregarious assertive active excitement cheerful

0.726 0.044 0.053 0.042 0.020 0.115

$`act comfortably around people`
friendly gregarious assertive active excitement cheerful

0.524 0.062 0.109 0.183 0.019 0.103

$`cheer people up`
friendly gregarious assertive active excitement cheerful

0.071 0.131 0.156 0.190 0.362 0.089

If you want to run transformer_scores on additional text, simply enter that text into the text argument of
the function. The transformer models that you’ve used during your R session will remain in R’s environment
until you exit R or remove them from your environment.

That’s it! You’ve successfully obtained sentiment analysis scores from the Cross-Encoder’s DistilRoBERTa
transformer model. Now, go forth and quantify the qualitative!

3. Using image_scores

transforEmotion also provides a Facial Expression Recognition (FER) function that uses the CLIP model to
obtain sentiment analysis scores from images. The CLIP model is a transformer model that was trained on a
dataset of 400 million image-text pairs. CLIP’s input contains an image and text labels and the inference
output is a score for each label. In case of emotion labels, the CLIP returns FER scores.

The image_scores function uses the CLIP model from Hugging Face. In a similar way to the
transformer_scores function, the image_scores function also downloads the CLIP model the first time
you run it, performs the inference and returns the output as an R dataframe.

The main input of this function is the path to image. It can be a local filepath or an URL pointin to an
image. The second input is an array of emotion labels.

2

https://huggingface.co/cross-encoder/nli-distilroberta-base
https://openai.com/blog/clip/
https://huggingface.co/openai/clip-vit-base-patch32

image <- ""https://upload.wikimedia.org/wikipedia/commons/thumb/e/ec/Mona_Lisa%2C_by_Leonardo_da_Vinci%2C_from_C2RMF_retouched.jpg/402px-Mona_Lisa%2C_by_Leonardo_da_Vinci%2C_from_C2RMF_retouched.jpg"

emotions <- c("excitement", "happiness", "pride", "anger", "fear", "sadness", "neutral")

image_scores(image, emotions)

This code runs FER on the Mona Lisa painting and returns the following output, a dataframe with 7 columns
and 1 row.

excitement happiness pride anger fear sadness neutral
1 0.02142187 0.02024468 0.0604699 0.04037686 0.03273294 0.1061871 0.7185667

In case there is no face recognized on the image, the function will return an empty dataframe, preceeded by a
warning message. We can test this with an image of three penguins from the South Shetland Islands.

image <- "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Adelie_penguins_in_the_South_Shetland_Islands.jpg/640px-Adelie_penguins_in_the_South_Shetland_Islands.jpg"

image_scores(image, emotions)

This gives the following output:
No face found in the image
data frame with 0 columns and 0 rows

4. Using ‘video_scores’
We can use the workflow described in section 3 to run FER on videos. The video_scores function takes a
video as input and returns a dataframe with FER scores for each frame of the video.

The video can be a local filepath or an URL pointing to a YouTube video. In case of YouTUbe, the function
will download the video and save it in the temporary directory. The function also takes an array of emotion
labels as input. After downloading video, this function will extract frames from the video and the run the
same workflow as in case of images.

Here’s an example of running FER on a YouTube video of Boris Johnson.

video_url <- "https://www.youtube.com/watch?v=hdYNcv-chgY&ab_channel=Conservatives"

emotions <- c("excitement", "happiness", "pride", "anger", "fear", "sadness", "neutral")

result <- video_scores(video_url, classes = emotions,
nframes = 10, save_video = TRUE,
save_frames = TRUE, video_name = 'boris-johnson',
start = 10, end = 120)

head(result)

Working with videos is more computationally complex. This example extracts only 10 frames from the video
and I shouldn’t take longer than few minutes on an average laptop without GPU (depending on your internet
connection needed to download the entire video and CLIP model). In research applicatons, we will usually
extract 100-300 frames from the video. This can take much longer, so pantience is advised while waiting for
the results.

Working with videos is more complex, so this function takes several additional arguments. The nframes
argument specifies the number of frames to extract from the video. The save_video argument specifies
whether to save the video in the temporary directory. The save_frames argument specifies whether to save
the extracted frames in the temporary directory. The video_name argument specifies the name of the video.

3

Saving the video and frames is useful for purposes of quality control and potential evalution of the result by
human coders.

The start and end arguments specify the start and end time of the video. The start and end arguments
are in seconds and point to the timestamps of the video where the analysis should start and end. If they are
not provided, the function will try to process the entire video.

The result is a dataframe with 7 columns and 10 rows, one row for each frame. The dataframe contains FER
scores for each frame of the video. The ouput of head(result) looks like this:

excitement happiness pride anger fear sadness neutral
1 0.08960483 0.006041054 0.05632496 0.2259102 0.2781007 0.1757137 0.1683045
2 0.11524552 0.011083936 0.08131301 0.1672127 0.3321840 0.1652457 0.1277151
3 0.09541881 0.007240616 0.05629114 0.1665660 0.3410282 0.1952039 0.1382514
4 0.09860725 0.011296707 0.07909032 0.1693194 0.3010349 0.1759851 0.1646665
5 0.08856109 0.007197607 0.07237346 0.2261922 0.3237688 0.1515539 0.1303529
6 0.10022306 0.011431777 0.09256416 0.1467394 0.3202718 0.1574203 0.1713494

These 3 functions are the core of transforEmotion package. They allow you to run sentiment analysis on text,
images and videos. If you run into any issues, please report them on the GitHub issues page. If you have any
suggestions for improvements, please let us know. We are always looking for ways to improve the package
and make it more useful for researchers.

4

https://github.com/atomashevic/transforEmotion/issues

	1. Python setup using setup_miniconda()
	2. Using transformer_scores
	3. Using image_scores
	4. Using `video_scores'

