Package ‘tmvmixnorm’

September 18, 2020

Type Package
Title Sampling from Truncated Multivariate Normal and t Distributions
Version 1.1.1
Maintainer Ting Fung (Ralph) Ma <tingfung.ma@wisc.edu>
Description Efficient sampling of truncated multivariate (scale) mixtures of normals under linear inequality constraints is nontrivial due to the analytically intractable normalizing constant. Meanwhile, traditional methods may subject to numerical issues, especially when the dimension is high and dependence is strong. Algorithms proposed by Li and Ghosh (2015) <doi: 10.1080/15598608.2014.996690> are adopted for overcoming difficulties in simulating truncated distributions. Efficient rejection sampling for simulating truncated univariate normal distribution is included in the package, which shows superiority in terms of acceptance rate and numerical stability compared to existing methods and R packages. An efficient function for sampling from truncated multivariate normal distribution subject to convex polytope restriction regions based on Gibbs sampler for conditional truncated univariate distribution is provided. By extending the sampling method, a function for sampling truncated multivariate Student’s t distribution is also developed. Moreover, the proposed method and computation remain valid for high dimensional and strong dependence scenarios. Empirical results in Li and Ghosh (2015) <doi: 10.1080/15598608.2014.996690> illustrated the superior performance in terms of various criteria (e.g. mixing and integrated autocorrelation time).

License GPL-2
Encoding UTF-8
LazyData true
Depends R (>= 3.2.0)
Imports stats, MASS
RoxygenNote 7.0.2
NeedsCompilation no
Author Ting Fung (Ralph) Ma [cre, aut],
Sujit K. Ghosh [aut],
Yifang Li [aut]
Repository CRAN
Date/Publication 2020-09-18 18:00:02 UTC
Description

`dtuvn` calculates the probability density function (pdf) of truncated univariate normal distribution.

Usage

```r
dtuvn(x, mean, sd, lower, upper)
```

Arguments

- `x`: value at which density is desired.
- `mean`: mean of the underlying univariate normal distribution.
- `sd`: standard deviation of the underlying univariate normal distribution.
- `lower`: lower bound for truncation.
- `upper`: upper bound for truncation.

Value

`dtuvn` returns the density (with same dimension and type as `x`) of truncated univariate normal distribution.

Examples

```r
dtuvn(x = -3:3, mean=0, sd=1 ,lower= -2, upper=2)
```
exp_acc_opt

<table>
<thead>
<tr>
<th>exp_acc_opt</th>
<th>Acceptance rate of translated-exponential rejection sampling</th>
</tr>
</thead>
</table>

Description

`exp_acc_opt` calculates the acceptance rate of translated-exponential rejection sampling for the truncation interval (a, b).

Usage

`exp_acc_opt(a, b)`

Arguments

- `a` lower bound for truncation.
- `b` upper bound for truncation.

Examples

```r
set.seed(1203)
exp_acc_opt(1,2)
```

exp_rej

<table>
<thead>
<tr>
<th>exp_rej</th>
<th>Translated-exponential rejection sampling</th>
</tr>
</thead>
</table>

Description

`exp_rej` is used for translated-exponential rejection sampling.

Usage

`exp_rej(a, b = Inf, lam = "default")`

Arguments

- `a` lower bound
- `b` upper bound
- `lam` lambda for translated-exponential only

Value

`exp_rej` returns a list: sampled value; and acc: total number of draw used.
Examples

```r
set.seed(1)
exp_rej(a=1, b=Inf)
```

<table>
<thead>
<tr>
<th>halfnorm_acc</th>
<th>Acceptance rate of half-normal rejection sampling</th>
</tr>
</thead>
</table>

Description

`halfnorm_acc` calculates the acceptance rate of half-normal rejection sampling for the truncation interval (a,b).

Usage

```r
halfnorm_acc(a, b)
```

Arguments

- `a`: lower bound for truncation.
- `b`: upper bound for truncation.

Examples

```r
set.seed(1203)
halfnorm_acc(1, 2)
```

<table>
<thead>
<tr>
<th>halfnorm_rej</th>
<th>Half-normal rejection sampling</th>
</tr>
</thead>
</table>

Description

`halfnorm_rej` is used for half-normal rejection sampling.

Usage

```r
halfnorm_rej(a, b)
```

Arguments

- `a`: lower bound
- `b`: upper bound
Value

halfnorm_rej returns a list x: sampled value; and acc: total number of draw used.

Examples

```r
set.seed(1)
halfnorm_rej(a=1, b=Inf)
```

Description

`imp` contains a general function for rejection sampling of standardized truncated univariate normal distribution in (a, b).

Usage

`imp(a, b)`

Arguments

- **a**: lower bound for truncation.
- **b**: upper bound for truncation (must be $> a$).

Value

`imp` returns a list x: sampled value; and acc: total number of draw used.

Examples

```r
imp(1,Inf) # Case 1: [a, infty)
imp(-1,1) # Case 2: 0 in [a, b], a<0<b
imp(1,2) # Case 3: [a,b], a>=0
```
imp_acc

Acceptance rate of truncated univariate normal distribution rejection sampling

Description

imp_acc calculates the acceptance rate of truncated univariate standardized normal distribution rejection sampling for the truncation interval (a,b).

Usage

imp_acc(a, b)

Arguments

a lower bound for truncation.
b upper bound for truncation.

Examples

imp_acc(1, Inf) # Case 1: [a, infty)
imp_acc(-1, 1) # Case 2: 0 in [a, b], a<0<b
imp_acc(1, 2) # Case 3: [a, b], a>=0

norm_acc

Acceptance rate of normal rejection sampling

Description

norm_acc calculates the acceptance rate of normal rejection sampling for the truncation interval (a,b).

Usage

norm_acc(a, b)

Arguments

a lower bound for truncation.
b upper bound for truncation.

Examples

set.seed(1203)
norm_acc(1, 2)
norm_rej

Normal rejection sampling

Description

norm_rej is used for normal rejection sampling.

Usage

norm_rej(a, b = Inf)

Arguments

a lower bound
b upper bound

Value

norm_rej returns a list x: sampled value; and acc: total number of draw used.

Examples

set.seed(1)
norm_rej(a=1, b=Inf)

ptuvn

Distribution function of truncated univariate normal distribution

Description

ptuvn calculates the cumulative distribution function (cdf) of truncated univariate normal distribution.

Usage

ptuvn(x, mean, sd, lower, upper)

Arguments

x value at which cdf is desired.
mean mean of the underlying univariate normal distribution.
sd standard deviation of the underlying univariate normal distribution.
lower lower bound for truncation.
upper upper bound for truncation.
Value

`ptuvn` returns the cumulative distribution function (with same dimension and type as `x`) of truncated univariate normal distribution.

Examples

```r
ptuvn(x= -3:3, mean=0, sd=1 ,lower= -2, upper=2)
```

Description

`rtmvn` simulates truncated multivariate (p-dimensional) normal distribution subject to linear inequality constraints. The constraints should be written as a matrix `(D)` with `lower` and `upper` as the lower and upper bounds for those constraints respectively. Note that `D` can be non-full rank, which generalize many traditional methods.

Usage

```r
rtmvn(n, Mean, Sigma, D = diag(1, length(Mean)), lower, upper, int = NULL, burn = 10, thin = 1)
```

Arguments

- **n**: number of random samples desired (sample size).
- **Mean**: mean vector of the underlying multivariate normal distribution.
- **Sigma**: positive definite covariance matrix of the underlying multivariate normal distribution.
- **D**: matrix or vector of coefficients of linear inequality constraints.
- **lower**: vector of lower bounds for truncation.
- **upper**: vector of upper bounds for truncation.
- **int**: initial value vector for Gibbs sampler (satisfying truncation), if `NULL` then determine automatically.
- **burn**: burn-in iterations discarded (default as 10).
- **thin**: thinning lag (default as 1).
Value

\texttt{rtmwn} returns a (n*p) matrix (or vector when n=1) containing random numbers which approximately follows truncated multivariate normal distribution.

Examples

\texttt{
Example for full rank with strong dependence
d <- 3
rho <- 0.9
Sigma <- matrix(0, nrow=d, ncol=d)
Sigma <- rho*abs(row(Sigma) - col(Sigma))

D1 <- diag(1:d) # Full rank

set.seed(1203)
ans.1 <- rtmvn(n=1000, Mean=1:d, Sigma, D=D1, lower=rep(-1,d), upper=rep(1,d),
int=rep(0,d), burn=50)

apply(ans.1, 2, summary)

Example for non-full rank
D2 <- matrix(c(1,1,1,0,1,0,1,0,1),ncol=d)
qr(D2)$rank # 2

set.seed(1228)
ans.2 <- rtmvn(n=100, Mean=1:d, Sigma, D=D2, lower=rep(-1,d), upper=rep(1,d), burn=10)

apply(ans.2, 2, summary)
}

\textbf{rtmvt}

Random number generation for truncated multivariate Student's t distribution subject to linear inequality constraints

Description

\texttt{rtmvt} simulates truncated multivariate (p-dimensional) Student's t distribution subject to linear inequality constraints. The constraints should be written as a matrix (D) with \texttt{lower} and \texttt{upper} as the lower and upper bounds for those constraints respectively. Note that D can be non-full rank, which generalizes many traditional methods.

Usage

\texttt{rtmvt(n, Mean, Sigma, nu, D, lower, upper, int = NULL, burn = 10, thin = 1)
Arguments

- **n**: number of random samples desired (sample size).
- **Mean**: location vector of the multivariate Student’s t distribution.
- **Sigma**: positive definite dispersion matrix of the multivariate t distribution.
- **nu**: degrees of freedom for Student-t distribution.
- **D**: matrix or vector of coefficients of linear inequality constraints.
- **lower**: lower bound vector for truncation.
- **upper**: upper bound vector for truncation.
- **int**: initial value vector for Gibbs sampler (satisfying truncation), if NULL then determine automatically.
- **burn**: burn-in iterations discarded (default as 10).
- **thin**: thinning lag (default as 1).

Value

`rtmvt` returns a \((n*p)\) matrix (or vector when \(n=1\)) containing random numbers which follows truncated multivariate Student-t distribution.

Examples

```r
# Example for full rank
d <- 3
rho <- 0.5
nu <- 10
Sigma <- matrix(0, nrow=d, ncol=d)
Sigma <- rho^abs(row(Sigma) - col(Sigma))
D1 <- diag(1,d) # Full rank
set.seed(1203)
ans.t <- rtmvt(n=1000, Mean=1:d, Sigma, nu=nu, D=D1, lower=rep(-1,d), upper=rep(1,d),
burn=50, thin=0)
apply(ans.t, 2, summary)
```

rtuvn

Random number generation for truncated univariate normal distribution

Description

`rtuvn` simulates truncated univariate normal distribution within the interval.
Usage
rtuvn(n = 1, mean = 0, sd = 1, lower, upper)

Arguments
n number of random samples desired (sample size).
mean mean of the underlying univariate normal distribution.
sd standard deviation of the underlying univariate normal distribution.
lower lower bound for truncation.
upper upper bound for truncation.

Value
rtuvn returns a vector of random number follows truncated univariate normal distribution.

Examples
set.seed(1203)
an <- rtuvn(n=1000, mean=1, sd=2, lower=-2, upper=3)
summary(ans)

Check if the sample matches with CDF by KS test
ks.test(ans, "ptuvn", 1, 2, -2, 3)

unif_acc

Acceptance rate of uniform rejection sampling

Description
unif_acc calculates the acceptance rate of uniform rejection sampling for the truncation interval (a, b).

Usage
unif_acc(a, b)

Arguments
a lower bound for truncation.
b upper bound for truncation.

Examples
set.seed(1203)
unif_acc(1, 2)
unif_rej

Uniform rejection sampling

Description

unif_rej is used for uniform rejection sampling.

Usage

unif_rej(a, b)

Arguments

a lower bound
b upper bound

Value

unif_rej returns a list x: sampled value; and acc: total number of draw used.

Examples

set.seed(1)
unif_rej(a=1, b=2)
Index

dtuvn, 2

exp_acc_opt, 3
exp_rej, 3

halfnorm_acc, 4
halfnorm_rej, 4

imp, 5
imp_acc, 6

norm_acc, 6
norm_rej, 7

ptuvn, 7

rtmvn, 8
rtmvt, 9
rtuvn, 10

unif_acc, 11
unif_rej, 12