contract()
and
contract_elementary()
in the stokes
packagefunction (K, v, lose = TRUE)
{
if (is.vector(v)) {
out <- Reduce("+", Map("*", apply(index(K), 1, contract_elementary,
v), elements(coeffs(K))))
}
else {
stopifnot(is.matrix(v))
out <- K
for (i in seq_len(ncol(v))) {
out <- contract(out, v[, i, drop = TRUE], lose = FALSE)
}
}
if (lose) {
out <- lose(out)
}
return(disordR::drop(out))
}
function (o, v)
{
out <- zeroform(length(o) - 1)
for (i in seq_along(o)) {
out <- out + (-1)^(i + 1) * v[o[i]] * as.kform(rbind(o[-i]),
lose = FALSE)
}
return(out)
}
To cite the stokes
package in publications, please use
Hankin (2022). Given a \(k\)-form \(\phi\colon V^k\longrightarrow\mathbb{R}\)
and a vector \(\mathbf{v}\in V\), the
contraction \(\phi_\mathbf{v}\) of \(\phi\) and \(\mathbf{v}\) is a \(k-1\)-form with
\[ \phi_\mathbf{v}\left(\mathbf{v}^1,\ldots,\mathbf{v}^{k-1}\right) = \phi\left(\mathbf{v},\mathbf{v}^1,\ldots,\mathbf{v}^{k-1}\right) \]
provided \(k>1\); if \(k=1\) we specify \(\phi_\mathbf{v}=\phi(\mathbf{v})\). If
Spivak (1965) does discuss this, I have
forgotten it. Function contract_elementary()
is a low-level
helper function that translates elementary \(k\)-forms with coefficient 1 (in the form
of an integer vector corresponding to one row of an index matrix) into
its contraction with \(\mathbf{v}\);
function contract()
is the user-friendly front end. We will
start with some simple examples. I will use phi
and \(\phi\) to represent the same object.
## An alternating linear map from V^5 to R with V=R^5:
## val
## 1 2 3 4 5 = 1
Thus \(k=5\) and we have \(\phi=\mathrm{d}x^1\wedge\mathrm{d}x^2\wedge \mathrm{d}x^3\wedge\mathrm{d}x^4\wedge\mathrm{d}x^5\). We have that \(\phi\) is a linear alternating map with
\[\phi\left(\begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\0\\1\end{bmatrix} \right)=1\].
The contraction of \(\phi\) with any vector \(\mathbf{v}\) is thus a \(4\)-form mapping \(V^4\) to the reals with \(\phi_\mathbf{v}\left(\mathbf{v}^1,\mathbf{v}^2,\mathbf{v}^3,\mathbf{v}^4\right)=\phi\left(\mathbf{v},\mathbf{v}^1,\mathbf{v}^2,\mathbf{v}^3,\mathbf{v}^4\right)\). Taking the simplest case first, if \(\mathbf{v}=(1,0,0,0,0)\) then
## An alternating linear map from V^4 to R with V=R^5:
## val
## 2 3 4 5 = 1
that is, a linear alternating map from \(V^4\) to the reals with
\[\phi_\mathbf{v}\left( \begin{bmatrix}0\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\0\\1\end{bmatrix}\right)=1\].
(the contraction has the first argument of \(\phi\) understood to be \(\mathbf{v}=(1,0,0,0,0)\)). Now consider \(\mathbf{w}=(0,1,0,0,0)\):
## An alternating linear map from V^4 to R with V=R^5:
## val
## 1 3 4 5 = -1
\[\phi_\mathbf{w}\left( \begin{bmatrix}0\\0\\1\\0\\0\end{bmatrix}, \begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\0\\1\end{bmatrix}\right)=1 \qquad\mbox{or}\qquad \phi_\mathbf{w}\left( \begin{bmatrix}1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\\0\\1\end{bmatrix}\right)=-1\].
Contraction is linear, so we may use more complicated vectors:
## An alternating linear map from V^4 to R with V=R^5:
## val
## 2 3 4 5 = 1
## 1 3 4 5 = -3
## An alternating linear map from V^4 to R with V=R^5:
## val
## 1 2 3 4 = 5
## 1 2 4 5 = 3
## 2 3 4 5 = 1
## 1 3 4 5 = -2
## 1 2 3 5 = -4
We can check numerically that the contraction is linear in its vector argument: \(\phi_{a\mathbf{v}+b\mathbf{w}}= a\phi_\mathbf{v}+b\phi_\mathbf{w}\).
a <- 1.23
b <- -0.435
v <- 1:5
w <- c(-3, 2.2, 1.1, 2.1, 1.8)
contract(phi,a*v + b*w) == a*contract(phi,v) + b*contract(phi,w)
## [1] TRUE
We also have linearity in the alternating form: \((a\phi+b\psi)_\mathbf{v}=a\phi_\mathbf{v} + b\psi_\mathbf{v}\).
## An alternating linear map from V^5 to R with V=R^7:
## val
## 2 3 4 5 7 = -2
## 1 3 4 6 7 = 1
## An alternating linear map from V^5 to R with V=R^7:
## val
## 1 2 3 6 7 = 2
## 2 3 5 6 7 = 1
## [1] TRUE
Weintraub (2014) gives us the following theorem, for any \(k\)-form \(\phi\) and \(l\)-form \(\psi\):
\[ \left(\phi\wedge\psi\right)_\mathbf{v} = \phi_\mathbf{v}\psi + (-1)^k\phi\wedge\psi_\mathbf{v}.\]
We can verify this numerically with \(k=4,l=5\):
phi <- rform(terms=5,k=3,n=9)
psi <- rform(terms=9,k=4,n=9)
v <- sample(1:100,9)
contract(phi^psi,v) == contract(phi,v) ^ psi - phi ^ contract(psi,v)
## [1] TRUE
The theorem is verified. We note in passing that the object itself is quite complicated:
## A kform object with 47 terms. Summary of coefficients:
##
## a disord object with hash d6cdb7213e60a9d847f1752a839f18b1de98bc57
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2943.00 -516.00 48.00 44.47 768.00 2625.00
##
##
## Representative selection of index and coefficients:
##
## An alternating linear map from V^6 to R with V=R^9:
## val
## 1 2 4 6 8 9 = 390
## 1 2 3 5 6 7 = 420
## 1 2 3 4 6 8 = -840
## 2 5 6 7 8 9 = 1605
## 1 2 3 6 7 9 = 355
## 1 2 3 6 8 9 = -1200
We may also switch \(\phi\) and \(\psi\), remembering to change the sign:
## [1] TRUE
It is of course possible to contract a contraction. If \(\phi\) is a \(k\)-form, then \(\left(\phi_\mathbf{v}\right)_\mathbf{w}\) is a \(k-2\) form with
\[ \left(\phi_\mathbf{u}\right)_\mathbf{v}\left(\mathbf{w}^1,\ldots,\mathbf{w}^{k-2}\right)=\phi\left(\mathbf{u},\mathbf{v},\mathbf{w}^1,\ldots,\mathbf{w}^{k-2}\right) \]
And this is straightforward to realise in the package:
## An alternating linear map from V^5 to R with V=R^7:
## val
## 1 4 5 6 7 = -2
## 2 4 5 6 7 = -1
## An alternating linear map from V^3 to R with V=R^7:
## val
## 2 5 6 = 10
## 1 4 7 = 2
## 4 5 7 = 73
## 1 4 5 = 20
## 2 4 7 = 1
## 1 5 6 = 20
## 2 4 6 = -14
## 1 6 7 = -2
## 2 6 7 = -1
## 2 4 5 = 10
## 5 6 7 = 73
## 4 6 7 = -90
## 1 4 6 = -28
## 4 5 6 = -122
But contract()
allows us to perform both contractions in
one operation: if we pass a matrix \(M\) to contract()
then this is
interpreted as repeated contraction with the columns of \(M\):
## [1] TRUE
We can verify directly that the system works as intended. The lines
below strip successively more columns from argument V
and
contract with them:
## An alternating linear map from V^4 to R with V=R^9:
## val
## 3 7 8 9 = -0.1482116
## 1 5 6 7 = 0.4314737
V <- matrix(rnorm(36),ncol=4)
jj <- c(
as.function(o)(V),
as.function(contract(o,V[,1,drop=TRUE]))(V[,-1]), # scalar
as.function(contract(o,V[,1:2]))(V[,-(1:2),drop=FALSE]),
as.function(contract(o,V[,1:3]))(V[,-(1:3),drop=FALSE]),
as.function(contract(o,V[,1:4],lose=FALSE))(V[,-(1:4),drop=FALSE])
)
print(jj)
## [1] -0.4992204 -0.4992204 -0.4992204 -0.4992204 -0.4992204
## [1] 2.775558e-16
and above we see agreement to within numerical precision. If we pass
three columns to contract()
the result is a \(0\)-form:
## [1] -0.4992204
In the above, the result is coerced to a scalar which is returned in
the form of a disord
object; in order to work with a formal
\(0\)-form (which is represented in the
package as a spray
with a zero-column index matrix) we can
use the lost=FALSE
argument:
## An alternating linear map from V^0 to R with V=R^0:
## val
## = -0.4992204
thus returning a \(0\)-form. If we iteratively contract a \(k\)-dimensional \(k\)-form, we return the determinant, and this may be verified as follows:
o <- as.kform(1:5)
V <- matrix(rnorm(25),5,5)
LHS <- det(V)
RHS <- contract(o,V)
c(LHS=LHS,RHS=RHS,diff=LHS-RHS)
## LHS RHS diff
## 6.355108e+00 6.355108e+00 1.776357e-15
Above we see agreement to within numerical error.
Suppose we wish to contract \(\phi=dx^{i_1}\wedge\cdots\wedge dx^{i_k}\) with vector \(\mathbf{v}=(v_1\mathbf{e}_1,\ldots,v_k\mathbf{e}_k)\). Thus we seek \(\phi_\mathbf{v}\) with \(\phi_\mathbf{v}\left(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right) = dx^{i_1}\wedge\cdots\wedge dx^{i_k}\left(\mathbf{v},\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right)\). Writing \(\mathbf{v}=v_1\mathbf{e}_1+\cdots+\mathbf{e}_k\), we have
\[\begin{eqnarray} \phi_\mathbf{v}\left(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right) &=& dx^{i_1}\wedge\cdots\wedge dx^{i_k}\left(\mathbf{v},\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right)\\&=& dx^{i_1}\wedge\cdots\wedge dx^{i_k}\left(v_1\mathbf{e}_1+\cdots+v_k\mathbf{e}_k,\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right)\\&=& v_1 dx^{i_1}\wedge\cdots\wedge dx^{i_k}\left(\mathbf{e}_1,\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right)+\cdots+ v_k dx^{i_1}\wedge\cdots\wedge dx^{i_k}\left(\mathbf{e}_k,\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right). \end{eqnarray}\]
where we have exploited linearity. To evaluate this it is easiest and most efficient to express \(\phi\) as \(\bigwedge_{j=1}^kdx^{i_j}\) and cycle through the index \(j\), and use various properties of wedge products:
\[\begin{eqnarray} dx^{i_1}\wedge\cdots\wedge dx^{i_k} &=& (-1)^{j-1} dx^{i_j}\wedge\left(dx^{i_1}\wedge\cdots\wedge\widehat{dx^{i_j}}\wedge\cdots\wedge dx^{i-k}\right)\\ &=& (-1)^{j-1} k\operatorname{Alt}\left(dx^{i_j}\otimes\left(dx^{i_1}\wedge\cdots\wedge\widehat{dx^{i_j}}\wedge\cdots\wedge dx^{i-k}\right)\right) \end{eqnarray}\]
(above, a hat indicates a term’s being omitted). From this, we see that \(l\not\in L\longrightarrow\phi=0\) (where \(L=\left\lbrace i_1,\ldots i_k\right\rbrace\) is the index set of \(\phi\)), for all the \(dx^p\) terms kill \(\mathbf{e}_l\). On the other hand, if \(l\in L\) we have
\[\begin{eqnarray} \phi_{\mathbf{e}_l}\left(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right) &=& \left(dx^{l}\wedge\left(dx^{i_1}\wedge\cdots\wedge\widehat{dx^{l}}\wedge\cdots\wedge dx^{i_k}\right)\right)\left(\mathbf{e}_l,\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right)\\ &=& (-1)^{l-1}k\left(dx^{l}\otimes\left(dx^{i_1}\wedge\cdots\wedge\widehat{dx^{l}}\wedge\cdots\wedge dx^{i_k}\right)\right)\left(\mathbf{e}_l,\left(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right)\right)\\ &=& (-1)^{l-1}k\left(dx^{i_1}\wedge\cdots\wedge\widehat{dx^{l}}\wedge\cdots\wedge dx^{i_k}\right)\left(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}\right) \end{eqnarray}\]
contract_elementary()
Function contract_elementary()
is a bare-bones low-level
no-frills helper function that returns \(\phi_\mathbf{v}\) for \(\phi\) an elementary form of the form \(dx^{i_1}\wedge\cdots\wedge dx^{i_k}\).
Suppose we wish to contract \(\phi=dx^1\wedge
dx^2\wedge dx^5\) with vector \(\mathbf{v}=(1,2,10,11,71)^T\).
Thus we seek \(\phi_\mathbf{v}\) with \(\phi_\mathbf{v}\left(\mathbf{v}_1,\mathbf{v}_2 \right)=dx^1\wedge dx^2\wedge dx^5\left(\mathbf{v},\mathbf{v}_1,\mathbf{v}_2\right)\). Writing \(\mathbf{v}=v_1\mathbf{e}_1+\cdots+v_5\mathbf{e}_5\) we have
\[\begin{eqnarray} \phi_\mathbf{v}\left(\mathbf{v}_1,\mathbf{v}_2 \right) &=& dx^1\wedge dx^2\wedge dx^5\left(\mathbf{v},\mathbf{v}_1,\mathbf{v}_2\right)\\ &=& dx^1\wedge dx^2\wedge dx^5\left(v_1\mathbf{e}_1+\cdots+v_5\mathbf{e}_5,\mathbf{v}_1,\mathbf{v}_2\right)\\&=& v_1 dx^1\wedge dx^2\wedge dx^5\left(\mathbf{e}_1,\mathbf{v}_1,\mathbf{v}_2\right)+ v_2 dx^1\wedge dx^2\wedge dx^5\left(\mathbf{e}_2,\mathbf{v}_1,\mathbf{v}_2\right)\\ &{}&\qquad +v_3dx^1\wedge dx^2\wedge dx^5\left(\mathbf{e}_3,\mathbf{v}_1,\mathbf{v}_2\right)+ v_4 dx^1\wedge dx^2\wedge dx^5\left(\mathbf{e}_4,\mathbf{v}_1,\mathbf{v}_2\right)\\ &{}&\qquad\qquad +v_5dx^1\wedge dx^2\wedge dx^5\left(\mathbf{e}_5,\mathbf{v}_1,\mathbf{v}_2\right)\\&=& v_1 dx^2\wedge dx^5\left(\mathbf{v}_1,\mathbf{v}_2\right)- v_2 dx^1\wedge dx^5\left(\mathbf{v}_1,\mathbf{v}_2\right)+0+0+ v_5 dx^1\wedge dx^2\left(\mathbf{v}_1,\mathbf{v}_2\right) \end{eqnarray}\]
(above, the zero terms are because the vectors \(\mathbf{e}_3\) and \(\mathbf{e}_4\) are killed by \(dx^1\wedge dx^2\wedge dx^5\)). We can see that the way to evaluate the contraction is to go through the terms of \(\phi\) [that is, \(dx^1\), \(dx^2\), and \(dx^5\)] in turn, and sum the resulting expressions:
o <- c(1,2,5)
v <- c(1,2,10,11,71)
(
(-1)^(1+1) * as.kform(o[-1])*v[o[1]] +
(-1)^(2+1) * as.kform(o[-2])*v[o[2]] +
(-1)^(3+1) * as.kform(o[-3])*v[o[3]]
)
## An alternating linear map from V^2 to R with V=R^5:
## val
## 1 5 = -2
## 2 5 = 1
## 1 2 = 71
This is performed more succinctly by
contract_elementary()
:
## An alternating linear map from V^2 to R with V=R^5:
## val
## 1 5 = -2
## 2 5 = 1
## 1 2 = 71
contract()
Given a vector v
, and kform
object
K
, the meat of contract()
would be
Reduce("+", Map("*", apply(index(K), 1, contract_elementary, v), elements(coeffs(K))))
I will show this in operation with simple but nontrivial arguments.
## An alternating linear map from V^4 to R with V=R^7:
## val
## 2 4 5 7 = 2
## 1 2 3 6 = 1
Then the inside bit would be
## [[1]]
## An alternating linear map from V^3 to R with V=R^7:
## val
## 2 4 7 = 5
## 4 5 7 = 2
## 2 5 7 = -4
## 2 4 5 = -7
##
## [[2]]
## An alternating linear map from V^3 to R with V=R^6:
## val
## 1 2 6 = 3
## 2 3 6 = 1
## 1 3 6 = -2
## 1 2 3 = -6
Above we see a two-element list, one for each elementary term of
K
. We then use base R’s Map()
function to
multiply each one by the appropriate coefficient:
## [[1]]
## An alternating linear map from V^3 to R with V=R^7:
## val
## 2 4 5 = -14
## 2 5 7 = -8
## 4 5 7 = 4
## 2 4 7 = 10
##
## [[2]]
## An alternating linear map from V^3 to R with V=R^6:
## val
## 1 2 3 = -6
## 1 3 6 = -2
## 2 3 6 = 1
## 1 2 6 = 3
And finally use Reduce()
to sum the terms:
## An alternating linear map from V^3 to R with V=R^7:
## val
## 2 4 7 = 10
## 4 5 7 = 4
## 2 5 7 = -8
## 1 2 3 = -6
## 2 4 5 = -14
## 1 3 6 = -2
## 2 3 6 = 1
## 1 2 6 = 3
However, it might be conceptually easier to use magrittr
pipes to give an equivalent definition:
K %>%
index %>%
apply(1,contract_elementary,v) %>%
Map("*", ., K %>% coeffs %>% elements) %>%
Reduce("+",.)
## An alternating linear map from V^3 to R with V=R^7:
## val
## 2 4 7 = 10
## 4 5 7 = 4
## 2 5 7 = -8
## 1 2 3 = -6
## 2 4 5 = -14
## 1 3 6 = -2
## 2 3 6 = 1
## 1 2 6 = 3
Well it might be clearer to Hadley but frankly YMMV.