
Package ‘pastboon’
January 8, 2025

Type Package

Title Simulation of Parameterized Stochastic Boolean Networks

Version 0.1.3

Description
A Boolean network is a particular kind of discrete dynamical system where the variables are sim-
ple binary switches. Despite its simplicity, Boolean network modeling has been a success-
ful method to describe the behavioral pattern of various phenomena. Applying stochas-
tic noise to Boolean networks is a useful approach for representing the effects of various perturb-
ing stimuli on complex systems. A number of methods have been developed to control noise ef-
fects on Boolean networks using parameters integrated into the update rules. This package pro-
vides functions to examine three such methods: Boolean network with perturbations (BNp), de-
scribed by Trairatphisan et al. (2013) <doi:10.1186/1478-811X-11-46>, stochastic discrete dy-
namical systems (SDDS), proposed by Murrugarra et al. (2012) <doi:10.1186/1687-4153-2012-
5>, and Boolean network with probabilistic edge weights (PEW), presented by De-
ritei et al. (2022) <doi:10.1371/journal.pcbi.1010536>. This package includes source code de-
rived from the 'BoolNet' package, which is licensed under the Artistic License 2.0.

Author Mohammad Taheri-Ledari [aut, cre, cph]
(<https://orcid.org/0009-0007-9132-077X>),

Kaveh Kavousi [ctb] (<https://orcid.org/0000-0002-1906-3912>),
Sayed-Amir Marashi [ctb] (<https://orcid.org/0000-0001-9801-7449>),
Authors of BoolNet [ctb] (Original authors of the BoolNet package),
Troy D. Hanson [ctb] (Contributed uthash macros)

Maintainer Mohammad Taheri-Ledari <mo.taheri@ut.ac.ir>

Depends R (>= 3.5.0)

Suggests BoolNet

License Artistic-2.0

Encoding UTF-8

LazyData true

NeedsCompilation yes

BugReports https://github.com/taherimo/pastboon/issues

Repository CRAN

Date/Publication 2025-01-08 08:30:02 UTC

1

https://doi.org/10.1186/1478-811X-11-46
https://doi.org/10.1186/1687-4153-2012-5
https://doi.org/10.1186/1687-4153-2012-5
https://doi.org/10.1371/journal.pcbi.1010536
https://orcid.org/0009-0007-9132-077X
https://orcid.org/0000-0002-1906-3912
https://orcid.org/0000-0001-9801-7449
https://github.com/taherimo/pastboon/issues

2 pastboon-package

Contents

pastboon-package . 2
calc_convergence_time . 3
calc_node_activities . 5
count_pairwise_trans . 8
extract_edges . 10
get_reached_states . 11
lac_operon_net . 14
myeloid_differentiation_net . 15

Index 16

pastboon-package Simulation of Parameterized Stochastic Boolean Networks

Description

A Boolean network is a particular kind of discrete dynamical system where the variables are simple
binary switches. Despite its simplicity, Boolean network modeling has been a successful method
to describe the behavioral pattern of various phenomena. Applying stochastic noise to Boolean
networks is a useful approach for representing the effects of various perturbing stimuli on complex
systems. A number of methods have been developed to control noise effects on Boolean networks
using parameters integrated into the update rules. This package provides functions to simulate and
analyze three such methods: Boolean network with perturbations (BNp), described by Trairatphisan
et al., stochastic discrete dynamical systems (SDDS), proposed by Murrugarra et al., and Boolean
network with probabilistic edge weights (PEW), presented by Deritei et al. The package includes
source code derived from the BoolNet package, which is licensed under the Artistic License 2.0.

Details

Applying perturbations to a standard deterministic Boolean network involves altering its update
rules. Manipulating the logical functions usually requires a thorough understanding of the reason-
ing behind the Boolean equations and may lead to a loss of the network’s main functional character-
istics, which often need to be preserved. An alternative approach to perturbing a Boolean network
is to introduce stochastic noise and control its effect through a set of parameters integrated into the
logical functions. This approach offers the advantage of allowing partial activation or inhibition of
nodes.

In pastboon, three parameterization methods are implemented to control the stochastic noise effect
on Boolean networks:

• BNp, Boolean network with perturbations (Trairatphisan et al.)

• SDDS, Stochastic discrete dynamical systems (Murrugarra et al.)

• PEW, Boolean network with probabilistic edge weights (Deritei et al.)

calc_convergence_time 3

Given a Boolean network, its parameterization method, and the parameter values, useful insights can
be gained from network simulations using the functions provided in this package. Node activities
(the average state of the nodes at each time-step) in the form of a time-series can be calculated us-
ing calc_node_activities. By having a time-series representing node activities, the time-step at
which the network reaches a steady-state distribution can be estimated using calc_convergence_time.
Additionally, the states reached after starting a Boolean network from a given set of initial states
can be sampled over specified time-steps using get_reached_states. The number of pairwise
transitions between a given set of states can be obtained using count_pairwise_trans. Finally,
the edges of a Boolean network can be extracted using extract_edges.

This package includes source code derived from the BoolNet package, which is licensed under the
Artistic License 2.0. Specifically, the C code for simulating Boolean networks and its R interface
code were initially taken from the BoolNet package but have been substantially altered (particularly
the C code) to meet our purposes.

Author(s)

Mohammad Taheri-Ledari [aut, cre, cph] <mo.taheri@ut.ac.ir>

Kaveh Kavousi [ctb]

Sayed-Amir Marashi [ctb]

Authors of BoolNet [ctb]

Troy D. Hanson [ctb]

References

Trairatphisan, P., Mizera, A., Pang, J., Tantar, A. A., Schneider, J., & Sauter, T. (2013). Recent
development and biomedical applications of probabilistic Boolean networks. Cell communication
and signaling, 11, 1-25.

Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Arat, S., & Laubenbacher, R. (2012). Modeling
stochasticity and variability in gene regulatory networks. EURASIP Journal on Bioinformatics
and Systems Biology, 2012, 1-11.

Deritei, D., Kunšič, N., & Csermely, P. (2022). Probabilistic edge weights fine-tune Boolean net-
work dynamics. PLoS Computational Biology, 18(10), e1010536.

Müssel, C., Hopfensitz, M., & Kestler, H. A. (2010). BoolNet—an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics, 26(10), 1378-1380.

calc_convergence_time Calculate convergence time-step for node activities

Description

Given a node activity time-series for a set of variables node_act, this function calculates the time-
step from which the changes in all the curves are below threshold for window_size consecutive
time-steps.

4 calc_convergence_time

Usage

calc_convergence_time(node_act, threshold, window_size = 1)

Arguments

node_act A matrix describing node activities over consecutive time-steps (i.e., time-series),
where rows represent time-steps and columns represent nodes. It is the output
of calc_node_activities.

threshold A value determining the maximum allowable change in node activities to decide
if they have converged.

window_size The number of consecutive time-steps for which the node activity curves must
remain stable (i.e., changes below threshold) to be considered converged. The
default is 1.

Details

The function checks if the changes in all node activity curves are less than threshold for window_size
consecutive time-steps. If this condition is met, the node activity curves are considered to have con-
verged to their stable values, and the convergence time-step (the starting point of the window) is
returned. Since node activities represent marginal probabilities of the nodes being active at each
time-step, convergence indicates that the steady-state distribution of the corresponding Boolean
network has been reached, meaning that the probability of being in each state of the network no
longer changes significantly.

Value

The time-step at which convergence occurs. If no convergence is detected, NA is returned.

Examples

Load the example network
data(lac_operon_net)

Define parameters for the SDDS method
props <- rep(0.95, length(lac_operon_net$genes))
params <- list(p00 = props, p01 = props, p10 = props, p11 = props)

Get node activities after simulation using the SDDS method
node_act <- calc_node_activities(lac_operon_net, method = "SDDS", params = params,

steps = 100, repeats = 10000)

Calculate the convergence time
convergence_time <- calc_convergence_time(node_act, threshold = 0.01)

Print the convergence time
print(convergence_time)

calc_node_activities 5

calc_node_activities Calculate activity rate for each node

Description

Calculates the activity rate of the nodes (i.e., the number of times a node is active, i.e., ON, divided
by the number of repeats) for a specified number of time-steps.

Usage

calc_node_activities(net, method = c("BNp", "SDDS", "PEW"), params, steps,
repeats = 1000, initial_prob = NULL, last_step = FALSE,
asynchronous = TRUE, update_prob = NULL)

Arguments

net A network structure of the class BooleanNetwork from the BoolNet package.

method The parameterization method to be used. Options are:

• "BNp": Boolean network with perturbations.
• "SDDS": Stochastic discrete dynamical systems.
• "PEW": Boolean network with probabilistic edge weights.

Each method requires a different format for the params argument.

params The parameter values depending on method:

• For method = "BNp", a single vector of probabilities, equal in length to the
number of network nodes.

• For method = "SDDS", a list of four equal-length vectors of probabilities:
p00, p01, p10, and p11, each equal in length to the number of network
nodes.

• For method = "PEW", a list of two equal-length vectors of probabilities:
p_on and p_off, each as long as the number of network edges, ordered
according to extract_edges.

steps The number of time-steps (non-negative integer) to simulate the network.

repeats The number of repeats (positive integer).

initial_prob The probability that each of the nodes is ON (1) in the initial state (time-step
0). It should be a vector of probabilities for each of the nodes which doesn’t
necessarily sum up to one. If NULL (default), 0.5 is used as the probability for
all nodes, meaning the initial state is randomly chosen based on a uniform dis-
tribution.

last_step If TRUE, only the node activity rates for the last time-step are returned. Other-
wise, the node activity rates for all time-steps in the form of a time-series are
returned.

asynchronous If TRUE, the asynchronous update scheme is used, where a single node is updated
at each time-step. In this case, update_prob indicates update probabilities. If
FALSE, the synchronous update scheme is utilized.

6 calc_node_activities

update_prob The probability of updating each variable (node) in each time-step when asynchronous
= TRUE. It should be a vector of probabilities for each of the nodes which sums
up to one. If NULL (default), nodes are updated randomly based on a uniform
distribution. If asynchronous = FALSE, this argument is ignored.

Details

By incorporating stochasticity into the update rule of a Boolean network and repeating the sim-
ulation several times, the average value of each node across the repeats can be considered as a
continuous variable. This approach transforms discrete binary variables into continuous ones, en-
abling continuous analysis methods applicable for studying the dynamic behavior of the Boolean
network. This function calculates the average value (i.e., node activity rate) of each network node
at each time-step.

Value

If last_step = TRUE, a vector with a length equal to the number of network nodes, representing
the activity rate of each node at the last time-step, is returned. If last_step = FALSE, a matrix with
steps + 1 rows (where the first row corresponds to time-step 0) and length(net$genes) columns
(representing node activities at each time-step) is returned. The order of the nodes in the vector or
columns (depending on last_step) is the same as net$genes.

References

Golinelli, O., & Derrida, B. (1989). Barrier heights in the Kauffman model. Journal De Physique,
50(13), 1587-1601. Shmulevich, I., Dougherty, E. R., & Zhang, W. (2002). Gene perturbation and
intervention in probabilistic Boolean networks. Bioinformatics, 18(10), 1319-1331.

Shmulevich, I., Dougherty, E. R., & Zhang, W. (2002). Gene perturbation and intervention in
probabilistic Boolean networks. Bioinformatics, 18(10), 1319-1331.

Trairatphisan, P., Mizera, A., Pang, J., Tantar, A. A., Schneider, J., & Sauter, T. (2013). Recent
development and biomedical applications of probabilistic Boolean networks. Cell communication
and signaling, 11, 1-25.

Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Arat, S., & Laubenbacher, R. (2012). Modeling
stochasticity and variability in gene regulatory networks. EURASIP Journal on Bioinformatics
and Systems Biology, 2012, 1-11.

Deritei, D., Kunšič, N., & Csermely, P. (2022). Probabilistic edge weights fine-tune Boolean net-
work dynamics. PLoS Computational Biology, 18(10), e1010536.

Examples

>>>>>>>>>>>>>>>> Load network and generate random initial states <<<<<<<<<<<<<<<<<

Load the example network
data(lac_operon_net)

Function to generate distinct colors for plot
generate_colors <- function(n) {

hues <- seq(0, 1, length.out = n + 1)[-1]
s <- 0.8

calc_node_activities 7

v <- 0.6
colors <- hsv(h = hues, s = s, v = v)
return(colors)

}

Generate distinct colors
col_vec <- generate_colors(length(lac_operon_net$genes))
col_vec <- col_vec[sample(1:length(col_vec))]

Define plot function
plot_node_activities <- function(node_activities, xlab, ylab) {

old_par <- par(no.readonly = TRUE)
layout(matrix(c(1, 2), nrow = 1), width = c(4, 1))
par(mar = c(5, 4, 4, 0))
matplot(1:nrow(node_activities), node_activities, type = "l", frame = TRUE, lwd = 2,

lty = 1, xlab = xlab, ylab = ylab, col = col_vec)
par(mar = c(5, 0, 4, 2))
plot(c(0, 1), type = "n", axes = FALSE, xlab = "")
legend("center", colnames(node_activities), col = col_vec,

cex = 0.5, fill = col_vec)
layout(matrix(1))
par(old_par)

}

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: BNp <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Define the parameters for the BNp method
params <- rep(0.05, length(lac_operon_net$genes))

Get node activities after simulation using the BNp method
node_act <- calc_node_activities(lac_operon_net, method = "BNp", params = params,

steps = 100, repeats = 10000)

Plot node activities
plot_node_activities(node_act, "Time-step", "Node activity")

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: SDDS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Define the parameters for the SDDS method
props <- rep(0.95, length(lac_operon_net$genes))
params <- list(p00 = props, p01 = props, p10 = props, p11 = props)

Get node activities after simulation using the SDDS method
node_act <- calc_node_activities(lac_operon_net, method = "SDDS", params = params,

steps = 100, repeats = 10000)

Plot node activities
plot_node_activities(node_act, "Time-step", "Node activity")

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: PEW <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Extract edges from the network
edges <- extract_edges(lac_operon_net)

8 count_pairwise_trans

Define the parameters for the PEW method
p_on <- runif(nrow(edges))
p_off <- runif(nrow(edges))
params <- list(p_on = p_on, p_off = p_off)

Get node activities after simulation using the PEW method
node_act <- calc_node_activities(lac_operon_net, method = "PEW", params = params,

steps = 100, repeats = 10000)

Plot node activities
plot_node_activities(node_act, "Time-step", "Node activity")

count_pairwise_trans Count pairwise transitions between a given set of states

Description

Counts the frequencies of transitions between each pair of states from a given set of states.

Usage

count_pairwise_trans(net, method = c("BNp", "SDDS", "PEW"), params, states,
steps = 1, repeats = 1000, asynchronous = TRUE,
update_prob = NULL)

Arguments

net A network structure of the class BooleanNetwork from the BoolNet package.
method The parameterization method to be used. Options are:

• "BNp": Boolean network with perturbations.
• "SDDS": Stochastic discrete dynamical systems.
• "PEW": Boolean network with probabilistic edge weights.

Each method requires a different format for the params argument.
params The parameter values depending on method:

• For method = "BNp", a single vector of probabilities, equal in length to the
number of network nodes.

• For method = "SDDS", a list of four equal-length vectors of probabilities:
p00, p01, p10, and p11, each equal in length to the number of network
nodes.

• For method = "PEW", a list of two equal-length vectors of probabilities:
p_on and p_off, each as long as the number of network edges, ordered
according to extract_edges.

states The network states among which pairwise transitions are to be counted. This
should be a matrix (where the rows represent the binary form of the states) or a
vector (for the binary form of a single state). The number of matrix columns (or
the length of the vector) should match the number of network nodes.

count_pairwise_trans 9

steps The number of time-steps, which should be a non-negative integer.

repeats The number of repeats, which should be a positive integer.

asynchronous If TRUE, the asynchronous update scheme is used, where a single node is updated
at each time-step. In this case, update_prob indicates update probabilities. If
FALSE, the synchronous update scheme is utilized.

update_prob The probability of updating each variable (node) in each time-step when asynchronous
= TRUE. It should be a vector of probabilities for each of the nodes which sums
up to one. If NULL (default), nodes are updated randomly based on a uniform
distribution. If asynchronous = FALSE, this argument is ignored.

Details

Counting the number of transitions between each pair of states reveals the reachability of one state
from another. This function performs simulations by starting from each state in states for steps
time-steps and repeats iterations, and counts the number of transitions to other states in states.

Value

A matrix where each element (i, j) represents the number of transitions from the ith state to the jth
state across steps time-steps and repeats iterations.

References

Golinelli, O., & Derrida, B. (1989). Barrier heights in the Kauffman model. Journal De Physique,
50(13), 1587-1601.

Shmulevich, I., Dougherty, E. R., & Zhang, W. (2002). Gene perturbation and intervention in
probabilistic Boolean networks. Bioinformatics, 18(10), 1319-1331.

Trairatphisan, P., Mizera, A., Pang, J., Tantar, A. A., Schneider, J., & Sauter, T. (2013). Recent
development and biomedical applications of probabilistic Boolean networks. Cell communication
and signaling, 11, 1-25.

Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Arat, S., & Laubenbacher, R. (2012). Modeling
stochasticity and variability in gene regulatory networks. EURASIP Journal on Bioinformatics
and Systems Biology, 2012, 1-11.

Deritei, D., Kunšič, N., & Csermely, P. (2022). Probabilistic edge weights fine-tune Boolean net-
work dynamics. PLoS Computational Biology, 18(10), e1010536.

Examples

>>>>>>>>>>>>>>>> Load network and generate random initial states <<<<<<<<<<<<<<<<<

Load the example network
data(lac_operon_net)

Generate some random states
states <- matrix(sample(c(0, 1), 10 * length(lac_operon_net$genes),

replace = TRUE), nrow = 10, ncol = length(lac_operon_net$genes))

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: BNp <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

10 extract_edges

Define the parameters for the BNp method
params <- rep(0.05, length(lac_operon_net$genes))

Obtain frequency of pairwise transitions
pairwise_trans <- count_pairwise_trans(lac_operon_net, states = states,

method = "BNp", params = params, steps = 100, repeats = 10)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: SDDS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Define the parameters for the SDDS method
props <- rep(0.95, length(lac_operon_net$genes))
params <- list(p00 = props, p01 = props, p10 = props, p11 = props)

Obtain frequency of pairwise transitions
pairwise_trans <- count_pairwise_trans(lac_operon_net, states = states,

method = "SDDS", params = params, steps = 100, repeats = 10)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: PEW <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Extract edges from the network
edges <- extract_edges(lac_operon_net)

Define the parameters for the PEW method
p_on <- runif(nrow(edges))
p_off <- runif(nrow(edges))
params <- list(p_on = p_on, p_off = p_off)

Obtain frequency of pairwise transitions
pairwise_trans <- count_pairwise_trans(lac_operon_net, states = states,

method = "PEW", params = params, steps = 100, repeats = 10)

extract_edges Extract edges from a Boolean network

Description

Extracts the list of directed edges (links) from a given Boolean network.

Usage

extract_edges(net, node_names = TRUE)

Arguments

net A network structure of the class BooleanNetwork from the BoolNet package.

node_names If TRUE (default), the edges are returned by node names; otherwise, the edges
are returned by node indices.

get_reached_states 11

Details

Since Boolean networks have a directed graph topology, this function extracts the list of directed
edges from a given Boolean network.

Value

A data frame where each row corresponds to a directed edge of the network and the two columns
indicate the source and destination of each edge.

Examples

Load the example network
data(lac_operon_net)

Extract edges from the network
edges <- extract_edges(lac_operon_net)

get_reached_states Obtain the reached states

Description

Obtains the reached states after simulating a Boolean network for a specified number of time-steps.

Usage

get_reached_states(net, method = c("BNp", "SDDS", "PEW"), params, steps,
repeats = NULL, initial_states = NULL, asynchronous = TRUE,
update_prob = NULL)

Arguments

net A network structure of the class BooleanNetwork from the BoolNet package.

method The parameterization method to be used. Options are:

• "BNp": Boolean network with perturbations.
• "SDDS": Stochastic discrete dynamical systems.
• "PEW": Boolean network with probabilistic edge weights.

Each method requires a different format for the params argument.

params The parameter values depending on method:

• For method = "BNp", a single vector of probabilities, equal in length to the
number of network nodes.

• For method = "SDDS", a list of four equal-length vectors of probabilities:
p00, p01, p10, and p11, each equal in length to the number of network
nodes.

12 get_reached_states

• For method = "PEW", a list of two equal-length vectors of probabilities:
p_on and p_off, each as long as the number of network edges, ordered
according to extract_edges.

steps The number of time-steps (non-negative integer) to simulate the network.

repeats The number of repeats (positive integer). If two or more initial states are pro-
vided via initial_states, this argument is ignored. If NULL (default), then
initial_states should not be NULL.

initial_states The set of initial states as a matrix (where each row corresponds to the binary
form of a state) or a vector (for the binary form of a single initial state). The num-
ber of matrix columns (or the length of the vector) should match the number of
network nodes. The order of the nodes in the columns (or vector) is considered
the same as net$genes. If NULL (default), initial states are chosen randomly for
repeats number of times based on a uniform distribution, requiring repeats
not to be NULL.

asynchronous If TRUE, the asynchronous update scheme is used, where a single node is updated
at each time-step. In this case, update_prob indicates update probabilities. If
FALSE, the synchronous update scheme is utilized.

update_prob The probability of updating each variable (node) in each time-step when asynchronous
= TRUE. It should be a vector of probabilities for each of the nodes which sums
up to one. If NULL (default), nodes are updated randomly based on a uniform
distribution. If asynchronous = FALSE, this argument is ignored.

Details

This function returns the reached states (the states in the last time-step) after simulating a network
for steps time-steps and repeating it for repeats number of times. If initial_states is NULL,
then the initial states are chosen randomly based on a uniform distribution for repeats number of
times, resulting in repeats number of reached states. If two or more initial states are provided by
the user, then the repeats argument is ignored, and one reached state is returned for each initial
state. If repeats is NULL, the number of returned reached states equals the number of initial states
(one reached state for each initial state). The arguments repeats and initial_states should not
both be NULL simultaneously.

Value

A matrix where each row is the binary form of a reached state, and each column corresponds to a
network node. The order of the nodes in the columns is the same as net$genes.

References

Golinelli, O., & Derrida, B. (1989). Barrier heights in the Kauffman model. Journal De Physique,
50(13), 1587-1601.

Shmulevich, I., Dougherty, E. R., & Zhang, W. (2002). Gene perturbation and intervention in
probabilistic Boolean networks. Bioinformatics, 18(10), 1319-1331.

Trairatphisan, P., Mizera, A., Pang, J., Tantar, A. A., Schneider, J., & Sauter, T. (2013). Recent
development and biomedical applications of probabilistic Boolean networks. Cell communication
and signaling, 11, 1-25.

get_reached_states 13

Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Arat, S., & Laubenbacher, R. (2012). Modeling
stochasticity and variability in gene regulatory networks. EURASIP Journal on Bioinformatics
and Systems Biology, 2012, 1-11.

Deritei, D., Kunšič, N., & Csermely, P. (2022). Probabilistic edge weights fine-tune Boolean net-
work dynamics. PLoS Computational Biology, 18(10), e1010536.

Examples

>>>>>>>>>>>>>>>> Load network and generate random initial states <<<<<<<<<<<<<<<<<

Load the example network
data(lac_operon_net)

Generate a single initial state
initial_state <- sample(c(0, 1), length(lac_operon_net$genes), replace = TRUE)

Generate multiple (10) initial states
initial_states <- matrix(sample(c(0, 1), 10 * length(lac_operon_net$genes),

replace = TRUE), nrow = 10, ncol = length(lac_operon_net$genes))

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: BNp <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Define the parameters for the BNp method
params <- rep(0.05, length(lac_operon_net$genes))

No initial states are provided
reached_states <- get_reached_states(lac_operon_net, method = "BNp", params = params,

steps = 100, repeats = 10)

A single initial state is provided
reached_states <- get_reached_states(lac_operon_net, method = "BNp", params = params,

steps = 100, initial_states = initial_state, repeats = 10)

Multiple initial states are provided
reached_states <- get_reached_states(lac_operon_net, method = "BNp", params = params,

steps = 100, initial_states = initial_states)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: SDDS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Define the parameters for the SDDS method
props <- rep(0.95, length(lac_operon_net$genes))
params <- list(p00 = props, p01 = props, p10 = props, p11 = props)

No initial states are provided
reached_states <- get_reached_states(lac_operon_net, method = "SDDS", params = params,

steps = 100, repeats = 10)

A single initial state is provided
reached_states <- get_reached_states(lac_operon_net, method = "SDDS", params = params,

steps = 100, initial_states = initial_state, repeats = 10)

Multiple initial states are provided

14 lac_operon_net

reached_states <- get_reached_states(lac_operon_net, method = "SDDS", params = params,
steps = 100, initial_states = initial_states)

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Method: PEW <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Extract edges from the network
edges <- extract_edges(lac_operon_net)

Define the parameters for the PEW method
p_on <- runif(nrow(edges))
p_off <- runif(nrow(edges))
params <- list(p_on = p_on, p_off = p_off)

No initial states are provided
reached_states <- get_reached_states(lac_operon_net, method = "PEW", params = params,

steps = 100, repeats = 10)

A single initial state is provided
reached_states <- get_reached_states(lac_operon_net, method = "PEW", params = params,

steps = 100, initial_states = initial_state, repeats = 10)

Multiple initial states are provided
reached_states <- get_reached_states(lac_operon_net, method = "PEW", params = params,

steps = 100, initial_states = initial_states)

lac_operon_net The lactose operon Boolean network

Description

The lactose operon (lac operon) Boolean network proposed by Veliz-Cuba and Stigler.

Usage

data(lac_operon_net)

Details

The data consists of an object lac_operon_net of the class BooleanNetwork (from the BoolNet
package), describing the lac operon gene regulatory network with 10 genes and 3 inputs. The three
inputs collectively indicate the concentration of glucose and lactose. Based on the synchronous up-
date scheme, when extracellular glucose is available, the lac operon is OFF (having one steady-state
attractor where all genes are OFF). Otherwise, depending on the extracellular lactose concentration,
the operon will be OFF, bistable (having two attractors), or ON (all genes are ON).

References

Veliz-Cuba, A., & Stigler, B. (2011). Boolean models can explain bistability in the lac operon.
Journal of computational biology, 18(6), 783-794.

myeloid_differentiation_net 15

Examples

load the network
data(lac_operon_net)

the network is stored in a variable called 'lac_operon_net'
print(lac_operon_net)

myeloid_differentiation_net

The myeloid differentiation Boolean network

Description

The myeloid differentiation Boolean network proposed by Krumsiek et al.

Usage

data(myeloid_differentiation_net)

Details

The data consists of an object myeloid_differentiation_net of the class BooleanNetwork (from
the BoolNet package), describing the myeloid differentiation gene regulatory network with 11
genes. More specifically, this network represents differentiation of common myeloid progenitors
to megakaryocytes, erythrocytes, granulocytes and monocytes. The state space of the model is a
hierarchical, acyclic graph, showing the principles of myeloid differentiation. A good agreement
between the steady states of the model and microarray expression profiles of two different studies
has been observed.

References

Krumsiek, J., Marr, C., Schroeder, T., & Theis, F. J. (2011). Hierarchical differentiation of myeloid
progenitors is encoded in the transcription factor network. PloS one, 6(8), e22649.

Examples

load the network
data(myeloid_differentiation_net)

the network is stored in a variable called 'myeloid_differentiation_net'
print(myeloid_differentiation_net)

Index

calc_convergence_time, 3, 3
calc_node_activities, 3, 4, 5
count_pairwise_trans, 3, 8

extract_edges, 3, 5, 8, 10, 12

get_reached_states, 3, 11

lac_operon_net, 14

myeloid_differentiation_net, 15

pastboon (pastboon-package), 2
pastboon-package, 2

16

	pastboon-package
	calc_convergence_time
	calc_node_activities
	count_pairwise_trans
	extract_edges
	get_reached_states
	lac_operon_net
	myeloid_differentiation_net
	Index

