Package ‘mbmixture’

October 22, 2020

Version 0.2-5
Date 2020-10-13
Title Microbiome Mixture Analysis
Description Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples.

Author Karl W Broman [aut, cre]<https://orcid.org/0000-0002-4914-6671>)

Maintainer Karl W Broman <broman@wisc.edu>

Depends R (>= 3.1.0)
Imports stats, parallel, numDeriv
Suggests knitr, rmarkdown, testthat, devtools, roxygen2
License MIT + file LICENSE

URL https://github.com/kbroman/mbmixture

BugReports https://github.com/kbroman/mbmixture/issues

VignetteBuilder knitr
LazyData true
Encoding UTF-8
ByteCompile true
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-10-22 09:10:05 UTC
R topics documented:

- bootstrapNull 2
- bootstrapSE 3
- mbmixdata 4
- mbmix_loglik 5
- mle_e 5
- mle_p 6
- mle_pe 7

Index 8

bootstrapNull

Bootstrap to assess significance

Description

Perform a parametric bootstrap to assess whether there is significant evidence that a sample is a mixture.

Usage

```r
bootstrapNull(
  tab,                      
  n_rep = 1000,            
  interval = c(0, 1),     
  tol = 0.000001,         
  check_boundary = TRUE,  
  cores = 1,              
  return_raw = TRUE
)
```

Arguments

- **tab** Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
- **n_rep** Number of bootstrap replicates
- **interval** Interval to which each parameter should be constrained
- **tol** Tolerance for convergence
- **check_boundary** If TRUE, explicitly check the boundaries of interval.
- **cores** Number of CPU cores to use, for parallel calculations. (If 0, use `parallel::detectCores()`.)
 Alternatively, this can be links to a set of cluster sockets, as produced by `parallel::makeCluster()`.
- **return_raw** If TRUE, return the raw results. If FALSE, just return the p-value. Unlink `bootstrapSE()`, here the default is TRUE.
Usage

```
bootstrapSE(
  tab,
  n_rep = 1000,  # Number of bootstrap replicates
  interval = c(0, 1),
  tol = 0.000001,
  check_boundary = FALSE,
  cores = 1,
  return_raw = FALSE
)
```

Arguments

- **tab**: Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
- **n_rep**: Number of bootstrap replicates
- **interval**: Interval to which each parameter should be constrained
- **tol**: Tolerance for convergence
- **check_boundary**: If TRUE, explicitly check the boundaries of interval.
- **cores**: Number of CPU cores to use, for parallel calculations. (If 0, use `parallel::detectCores()`. Alternatively, this can be links to a set of cluster sockets, as produced by `parallel::makeCluster()`.
- **return_raw**: If TRUE, return the raw results. If FALSE, just return the estimated standard errors.

Value

If `return_raw=FALSE`, a single numeric value (the p-value). If `return_raw=TRUE`, a vector of length `n_rep` with the LRT statistics from each bootstrap replicate.

See Also

`bootstrapSE()`

Examples

```
data(mbmixdata)
  # just 100 bootstrap replicates, as an illustration
  bootstrapNull(mbmixdata, n_rep=100)
```
Value

If `return_raw=FALSE`, a vector of two standard errors. If `return_raw=TRUE`, an matrix of size `n_rep x 2` with the detailed bootstrap results.

See Also

`bootstrapNull()`

Examples

```r
data(mbmixdata)
# just 100 bootstrap replicates, as an illustration
bootstrapSE(mbmixdata, n_rep=100)
```

mbmixdata

Example dataset for mbmixture package

Description

Example dataset for mbmixture package.

Usage

```r
data(mbmixdata)
```

Format

Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.

Examples

```r
data(mbmixdata)
mle_pe(mbmixdata)
```
mbmix_loglik

Description

Calculate log likelihood function for microbiome sample mixture model at particular values of \(p \) and \(e \).

Usage

```r
mbmix_loglik(tab, p, e=0)
```

Arguments

- **tab**: Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
- **p**: Contaminant probability (proportion of mixture coming from the second sample).
- **e**: Sequencing error rate.

Value

The log likelihood evaluated at \(p \) and \(e \).

Examples

```r
data(mbmixdata)
mbmix_loglik(mbmixdata, p=0.74, e=0.002)
```

mle_e

Description

Calculate the MLE of the sequencing error rate \(e \) for a fixed value of the contaminant probability \(p \).

Usage

```r
mle_e(
  tab,
  p = 0.05,
  interval = c(0, 1),
  tol = 0.000001,
  check_boundary = FALSE
)
```
Arguments

- **tab**: Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
- **p**: Assumed value for the contaminant probability
- **interval**: Interval to which each parameter should be constrained.
- **tol**: Tolerance for convergence.
- **check_boundary**: If TRUE, explicitly check the boundaries of `interval`.

Value

A single numeric value, the MLE of e, with the log likelihood as an attribute.

Examples

```r
data(mbmixdata)
mle_e(mbmixdata, p=0.74)
```

Description

Calculate the MLE of the contaminant probability p for a fixed value of the sequencing error rate e.

Usage

```r
mle_p(
  tab,
  e = 0.002,
  interval = c(0, 1),
  tol = 0.000001,
  check_boundary = FALSE
)
```

Arguments

- **tab**: Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
- **e**: Assumed value for the sequencing error rate.
- **interval**: Interval to which each parameter should be constrained.
- **tol**: Tolerance for convergence.
- **check_boundary**: If TRUE, explicitly check the boundaries of `interval`.
Value

A single numeric value, the MLE of \(p \), with the log likelihood as an attribute.

Examples

```r
data(mbmixdata)
mle_p(mbmixdata, e=0.002)
```

mle_pe

Find MLEs for microbiome mixture

Description

Find joint MLEs of \(p \) and \(e \) for microbiome mixture model

Usage

```r
mle_pe(
  tab,
  interval = c(0, 1),
  tol = 0.000001,
  check_boundary = FALSE,
  SE = FALSE
)
```

Arguments

- `tab` Dataset of read counts as 3d array of size 3x3x2, genotype in first sample x genotype in second sample x allele in read.
- `interval` Interval to which each parameter should be constrained
- `tol` Tolerance for convergence
- `check_boundary` If TRUE, explicitly check the boundaries of `interval`. If TRUE, get estimated standard errors.
- `SE` If TRUE, get estimated standard errors.

Value

A vector containing the estimates of \(p \) and \(e \) along with the evaluated log likelihood and likelihood ratio test statistics for the hypotheses \(p=0 \) and \(p=1 \).

Examples

```r
data(mbmixdata)
mle_pe(mbmixdata)
```
Index

* datasets
 mbmixdata, 4

bootstrapNull, 2
bootstrapNull(), 4
bootstrapSE, 3
bootstrapSE(), 2, 3

mbmix_loglik, 5
mbmixdata, 4
mle_e, 5
mle_p, 6
mle_pe, 7

parallel::detectCores(), 2, 3
parallel::makeCluster(), 2, 3