gmresls: Solve Least Squares with GMRES(k)

Solves a least squares system Ax~=b (dim(A)=(m,n) with m >= n) with a precondition matrix B: BAx=Bb (dim(B)=(n,m)). Implemented method is based on GMRES (Saad, Youcef; Schultz, Martin H. (1986). "GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems" <doi:10.1137/0907058>) with callback functions, i.e. no explicit A, B or b are required.

Version: 0.2.3
Suggests: RUnit
Published: 2025-01-17
DOI: 10.32614/CRAN.package.gmresls
Author: Serguei Sokol ORCID iD [aut, cre]
Maintainer: Serguei Sokol <sokol at insa-toulouse.fr>
BugReports: https://forgemia.inra.fr/mathscell/gmresls/-/issues
License: GPL (≥ 3)
Copyright: see file COPYRIGHTS
NeedsCompilation: no
Materials: README NEWS
CRAN checks: gmresls results

Documentation:

Reference manual: gmresls.pdf

Downloads:

Package source: gmresls_0.2.3.tar.gz
Windows binaries: r-devel: gmresls_0.2.3.zip, r-release: gmresls_0.2.3.zip, r-oldrel: gmresls_0.2.3.zip
macOS binaries: r-release (arm64): gmresls_0.2.2.tgz, r-oldrel (arm64): gmresls_0.2.2.tgz, r-release (x86_64): gmresls_0.2.3.tgz, r-oldrel (x86_64): gmresls_0.2.2.tgz
Old sources: gmresls archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=gmresls to link to this page.