gllvm
gllvm
is an R package for analysing multivariate
ecological data with Generalized Linear Latent Variable Models (GLLVM).
Estimation is performed using maximum likelihood estimation, together
with either variational approximation (VA) or Laplace approximation (LA)
method to approximate the marginal likelihood.
Installation
From CRAN you can install the package using:
install.packages("gllvm")
Or the development version of gllvm
from github with the
help of devtools
package using:
devtools::install_github("JenniNiku/gllvm")
Getting started
For getting started with gllvm
we recommend to read
vignette Analysing
multivariate abundance data using gllvm or introductions for using
gllvm
for ordination
and for analysing
species correlations.
Other available vignettes are: Analysing
microbial community data, How
to use the quadratic response model, Ordination
with predictors, Analysing
percent cover data and Structured
and correlated random effects and latent variables.
Citation
The citation
function in R provides information on how
to cite the methods in this package. Please remember to cite the
software (version) separately from any relevent research articles to
provide the appropriate credit to all associated contributors. The
reference for the software package is: Niku, J., Brooks, W.,
Herliansyah, R., Hui, F. K. C., Korhonen, P., Taskinen, S., van der
Veen, B., and Warton, D. I. (YYYY). gllvm: Generalized Linear Latent
Variable Models.R package version XXX, where YYYY represents the
publication date of the used version of the package represented by
XXX.
References
Hui,
F.K.C., Warton, D., Ormerod, J., Haapaniemi, V., & Taskinen, S.
(2017). Variational approximations for generalized linear latent
variable models. Journal of Computational and Graphical Statistics,
26(1), 35 - 43.
Niku,
J., Warton, D., Hui, F.K.C., & Taskinen, S. (2017). Generalized
linear latent variable models for multivariate count and biomass data in
ecology. Journal of Agricultural, Biological and Environmental
Statistics, 22(4), 498 - 522.
Niku,
J., Hui, F.K.C., Taskinen, S., & Warton, D. (2019). gllvm: Fast
analysis of multivariate abundance data with generalized linear latent
variable models in r. Methods in Ecology and Evolution, 10(12), 2173 -
2182.
Niku,
J., Brooks, W., Herliansyah, R., Hui, F.K.C., Taskinen, S., &
Warton, D. (2019). Efficient estimation of generalized linear latent
variable models. PloS one, 14(5), e0216129.
Niku, J., Hui, F. K. C.,
Taskinen, S., and Warton, D. I. (2021). Analyzing environmental-trait
interactions in ecological communities with fourth-corner latent
variable models. Environmetrics, 32(6), 1-17.
van
der Veen, B., Hui, F.K.C., Hovstad, K.A., Solbu, E.B., & O’Hara,
R.B. (2021). Model-based ordination for species with unequal niche
widths. Methods in Ecology and Evolution, 12(7), 1288 - 1300.
van der Veen, B.,
Hui, F. K. C., Hovstad, K.A., and O’Hara, R.B. (2023). Concurrent
ordination: simultaneous unconstrained and constrained latent variable
modelling. Methods in Ecology and Evolution, 14(2), 683-695.
van der Veen, B. and
O’Hara, R.B. (2024). Fast fitting of phylogenetic mixed effects models.
arxiv.
Korhonen, P.,
Hui, F. K. C., Niku, J., and Taskinen, S. (2023). Fast and universal
estimation of latent variable models using extended variational
approximations. Statistics and Computing, 33(1), 1-16.