Package ‘eimpute’

April 28, 2020

Type Package

Title Efficiently Impute Large Scale Incomplete Matrix

Version 0.1.1

Date 2020-04-27

Author Zhe Gao [aut, cre],
 Jin Zhu [aut],
 Junxian Zhu [aut],
 Xueqin Wang [aut],
 Yixuan Qiu [cph],
 Gael Guennebaud [cph, ctb],
 Jitse Niesen [cph, ctb],
 Ray Gardner [ctb]

Maintainer Zhe Gao <gaozh8@mail2.sysu.edu.cn>

Description Efficiently impute large scale matrix with missing values via its unbiased low-rank matrix approximation. Our main approach is Hard-Impute algorithm proposed in <http://www.jmlr.org/papers/v11/mazumder10a.html>, which achieves highly computational advantage by truncated singular-value decomposition.

License GPL-3 | file LICENSE

Imports Rcpp (>= 0.12.6)

LinkingTo Rcpp, RcppEigen

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

NeedsCompilation yes

Suggests knitr

VignetteBuilder knitr

Repository CRAN

Date/Publication 2020-04-28 05:00:07 UTC
R topics documented:

biscale 2
biscale.control 3
eimpute ... 4
incomplete.generator 5
r.search ... 6

Index

biscale 8

biscale

Data standardization

Description

Standardize a matrix rows and/or columns to have zero mean or unit variance

Usage

biscale(x, thresh.sd = 1e-05, maxit.sd = 100, control = list(...), ...)

Arguments

x an m by n matrix possibly with NAs.
thresh.sd convergence threshold, measured as the relative change in the Frobenius norm between two successive estimates.
maxit.sd maximum number of iterations.
control a list of parameters that control details of standard procedure. See biscale.control.
... arguments to be used to form the default control argument if it is not supplied directly.

Value

A list is returned

x.st The matrix after standardization.
alpha The row mean after iterative process.
beta The column mean after iterative process.
tau The row standard deviation after iterative process.
gamma The column standard deviation after iterative process.

References

Examples

RESSED Quick Start REDDED
m <- 100
n <- 100
r <- 10
x_na <- incomplete.generator(m, n, r)

Standardize both mean and variance
xs <- biscale(x_na)

Only standardize mean
xs_mean <- biscale(x_na, row.mean = TRUE, col.mean = TRUE)

Only standardize variance
x_std <- biscale(x_na, row.std = TRUE, col.std = TRUE)

biscale.control Control for standard procedure

Description

Various parameters that control aspects of the standard procedure.

Usage

biscale.control(
row.mean = FALSE,
row.std = FALSE,
col.mean = FALSE,
col.std = FALSE
)

Arguments

row.mean if row.mean = TRUE (the default), row centering will be performed resulting in a matrix with row means zero. If row.mean is a vector, it will be used in the iterative process. If row.mean = FALSE nothing is done.
row.std if row.std = TRUE, row scaling will be performed resulting in a matrix with row variance one. If row.std is a vector, it will be used in the iterative process. If row.std = FALSE (the default) nothing is done.
col.mean similar to row.mean.
col.std similar to row.std.

Value

A list with components named as the arguments.
eimpute

Efficiently impute missing values for a large scale matrix

Description
Fit a low-rank matrix approximation to a matrix with missing values. The algorithm iterates like EM: filling the missing values with the current guess, and then approximating the complete matrix via truncated SVD.

Usage

eimpute(
 x,
 r,
 svd.method = c("tsvd", "rsvd"),
 thresh = 1e-05,
 maxit = 100,
 override = FALSE,
 control = list(...),
 ...
)

Arguments

- **x**: an \(m \) by \(n \) matrix with \(\text{NAs} \).
- **r**: the rank of low-rank matrix for approximating \(x \).
- **svd.method**: a character string indicating the truncated SVD method. If \(\text{svd.method} = \text{"rsvd"} \), a randomized SVD is used, else if \(\text{svd.method} = \text{"tsvd"} \), standard truncated SVD is used. Any unambiguous substring can be given. Default \(\text{svd.method} = \text{"tsvd"} \).
- **thresh**: convergence threshold, measured as the relative change in the Frobenius norm between two successive estimates.
- **maxit**: maximal number of iterations.
- **override**: logical value indicating whether the observed elements in \(x \) should be overwritten by its low-rank approximation.
- **control**: a list of parameters that control details of standard procedure, See \(\text{biscale.control} \).
- **...**: arguments to be used to form the default control argument if it is not supplied directly.

Value
A list containing the following components

- **x.imp**: the matrix after completion.
- **rmse**: the relative mean square error of matrix completion, i.e., training error.
- **iter.count**: the number of iterations.
References

Examples

```r
### Quick Start ###
m <- 100n <- 100
r <- 10
x_na <- incomplete.generator(m, n, r)
head(x_na[, 1:6])
x_impute <- eimpute(x_na, r)
head(x_impute["x.imp"][, 1:6])
x_impute["rmse"]
```

incomplete.generator
Incomplete data generator

Description

Generate a matrix with missing values, where the indices of missing values are uniformly randomly distributed in the matrix.

Usage

```
incomplete.generator(m, n, r, snr = 3, prop = 0.5, seed = 1)
```

Arguments

- `m`
 the rows of the matrix.
- `n`
 the columns of the matrix.
- `r`
 the rank of the matrix.
- `snr`
 the signal-to-noise ratio in generating the matrix. Default `snr = 3`.
- `prop`
 the proportion of missing observations. Default `prop = 0.5`.
- `seed`
 the random seed. Default `seed = 1`.

Details

We generate the matrix by $UV + \epsilon$, where U, V are $m \times r, r \times n$ matrix satisfy standard normal distribution. ϵ has a normal distribution with mean 0 and variance $\frac{r}{\text{snr}}$.
r.search

Value

A matrix with missing values.

Examples

```r
m <- 100
n <- 100
r <- 10
x_na <- incomplete.generator(m, n, r)
head(x_na[, 1:6])
```

r.search

Search rank magnitude of the best approximating matrix

Description

Estimate a preferable matrix rank magnitude for fitting a low-rank matrix approximation to a matrix with missing values. The algorithm use GIC/CV to search the rank in a given range, and then fill the missing values with the estimated rank.

Usage

```r
r.search(
  x,
  r.min = 1,
  r.max,
  svd.method = c("tsvd", "rsvd"),
  rule.type = c("gic", "cv"),
  maxit.rank = 1,
  nfolds = 5,
  thresh = 1e-05,
  maxit = 100,
  override = FALSE,
  control = list(...),
  ...)
```

Arguments

- `x` an `m` by `n` matrix with NAs.
- `r.min` the start rank for searching. Default `r.min = 1`.
- `r.max` the max rank for searching.
- `svd.method` a character string indicating the truncated SVD method. If `svd.method = "rsvd"`, a randomized SVD is used, else if `svd.method = "tsvd"`, standard truncated SVD is used. Any unambiguous substring can be given. Default `svd.method = "tsvd"`.
r.search

rule.type a character string indicating the information criterion rule. If rule.type = "gic", generalized information criterion rule is used, else if rule.type = "cv", cross validation is used. Any unambiguous substring can be given. Default rule.type = "gic".

maxit.rank maximal number of iterations in searching rank. Default maxit.rank = 1.

nfolds number of folds in cross validation. Default nfolds = 5.

thresh convergence threshold, measured as the relative change in the Frobenius norm between two successive estimates.

maxit maximal number of iterations.

override logical value indicating whether the observed elements in x should be overwritten by its low-rank approximation.

control a list of parameters that control details of standard procedure, See biscale.control.

... arguments to be used to form the default control argument if it is not supplied directly.

Value

A list containing the following components

- x.imp the matrix after completion with the estimated rank.
- r.est the rank estimation.
- rmse the relative mean square error of matrix completion, i.e., training error.
- iter.count the number of iterations.

Examples

```
############### Quick Start ###############
m <- 100
n <- 100
r <- 10
x_na <- incomplete.generator(m, n, r)
head(x_na[, 1:6])
x_impute <- r.search(x_na, 15, "svd", "gic")
x_impute["r.est"]
```
Index

biscale, 2
biscale.control, 2, 3, 4, 7

eimpute, 4

incomplete.generator, 5

r.search, 6