Package 'bayesCureRateModel'

June 27, 2024

Type Package

Title Bayesian Cure Rate Modeling for Time-to-Event Data

Version 1.0

Date 2024-06-26

Maintainer Panagiotis Papastamoulis <papapast@yahoo.gr>

Description A fully Bayesian approach in order to estimate a general family of cure rate models under the presence of covariates, see Papastamoulis and Mi-

lienos (2023) <doi:10.48550/arXiv.2310.06926>. The promotion time can be modelled (a) parametrically using typical distributional assumptions for time to event data (including the Weibull, Exponential, Gompertz, log-Logistic distributions), or (b) semiparametrically using finite mixtures of Gamma distributions. Posterior inference is carried out by constructing a Metropolis-coupled Markov chain Monte Carlo (MCMC) sampler, which combines Gibbs sampling for the latent cure indicators and Metropolis-

Hastings steps with Langevin diffusion dynamics for parameter updates. The main MCMC algorithm is embedded within a parallel tempering scheme by considering heated versions of the target posterior distribution.

License GPL-2

```
URL https://github.com/mqbssppe/Bayesian_cure_rate_model
```

Imports Rcpp (>= 1.0.12),doParallel, foreach, mclust, coda, HDInterval, VGAM, calculus, flexsurv

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Panagiotis Papastamoulis [aut, cre]

(<https://orcid.org/0000-0001-9468-7613>),
Fotios Milienos [aut] (<https://orcid.org/0000-0003-1423-7132>)

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2024-06-27 14:20:06 UTC

Contents

bayesCureRateModel-package	2
complete_log_likelihood_general	5
cure_rate_MC3	7
cure_rate_mcmc	10
log_dagum	13
log_gamma	14
log_gamma_mixture	15
log_gompertz	16
log_logLogistic	17
log_lomax	18
log_weibull	19
marriage_dataset	20
plot.bayesCureModel	20
print.bayesCureModel	22
summary.bayesCureModel	23
	26

bayesCureRateModel-package

Bayesian Cure Rate Modeling for Time-to-Event Data

Description

Index

A fully Bayesian approach in order to estimate a general family of cure rate models under the presence of covariates, see Papastamoulis and Milienos (2023) <doi:10.48550/arXiv.2310.06926>. The promotion time can be modelled (a) parametrically using typical distributional assumptions for time to event data (including the Weibull, Exponential, Gompertz, log-Logistic distributions), or (b) semiparametrically using finite mixtures of Gamma distributions. Posterior inference is carried out by constructing a Metropolis-coupled Markov chain Monte Carlo (MCMC) sampler, which combines Gibbs sampling for the latent cure indicators and Metropolis-Hastings steps with Langevin diffusion dynamics for parameter updates. The main MCMC algorithm is embedded within a parallel tempering scheme by considering heated versions of the target posterior distribution.

The main function of the package is cure_rate_MC3. See details for a brief description of the model.

Details

Let $y = (y_1, \dots, y_n)$ denote the observed data, which correspond to time-to-event data or censoring times. Let also $x_i = (x_{i1}, \dots, x_{x_{ip}})'$ denote the covariates for subject $i, i = 1, \dots, n$.

Assuming that the n observations are independent, the observed likelihood is defined as

$$L = L(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{x}) = \prod_{i=1}^{n} f_{P}(y_{i}; \boldsymbol{\theta}, \boldsymbol{x}_{i})^{\delta_{i}} S_{P}(y_{i}; \boldsymbol{\theta}, \boldsymbol{x}_{i})^{1-\delta_{i}},$$

where $\delta_i = 1$ if the *i*-th observation corresponds to time-to-event while $\delta_i = 0$ indicates censoring time. The parameter vector $\boldsymbol{\theta}$ is decomposed as

$$\theta = (\alpha', \beta', \gamma, \lambda)$$

where

- $\alpha = (\alpha_1, \dots, \alpha_d)' \in \mathcal{A}$ are the parameters of the promotion time distribution whose cumulative distribution and density functions are denoted as $F(\cdot, \alpha)$ and $f(\cdot, \alpha)$, respectively.
- • B ∈ R^k are the regression coefficients with k denoting the number of columns in the design matrix (it may include a constant term or not).
- $\gamma \in \mathbf{R}$
- $\lambda > 0$.

The population survival and density functions are defined as

$$S_P(y; \boldsymbol{\theta}) = \left(1 + \gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\} c^{\gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\}} F(y; \boldsymbol{\alpha})^{\lambda}\right)^{-1/\gamma}$$

whereas,

$$f_P(y; \boldsymbol{\theta}) = -\frac{\partial S_P(y; \boldsymbol{\theta})}{\partial y}.$$

Finally, the cure rate is affected through covariates and parameters as follows

$$p_0(\boldsymbol{x}_i; \boldsymbol{\theta}) = \left(1 + \gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\} c^{\gamma \exp\{\boldsymbol{x}_i \boldsymbol{\beta}'\}}\right)^{-1/\gamma}$$

where $c = e^{e^{-1}}$.

The promotion time distribution can be a member of standard families (currently available are the following: Exponential, Weibull, Gamma, Lomax, Gompertz, log-Logistic) and in this case $\alpha = (\alpha_1, \alpha_2) \in (0, \infty)^2$. Also considered is the Dagum distribution, which has three parameters $(\alpha_1, \alpha_2, \alpha_3) \in (0, \infty)^3$. In case that the previous parametric assumptions are not justified, the promotion time can belong to the more flexible family of finite mixtures of Gamma distributions. For example, assume a mixture of two Gamma distributions of the form

$$f(y; \boldsymbol{\alpha}) = \alpha_5 f_{\mathcal{G}}(y; \alpha_1, \alpha_3) + (1 - \alpha_5) f_{\mathcal{G}}(y; \alpha_2, \alpha_4),$$

where

$$f_{\mathcal{G}}(y; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha - 1} \exp\{-\beta y\}, y > 0$$

denotes the density of the Gamma distribution with parameters $\alpha>0$ (shape) and $\beta>0$ (rate). For the previous model, the parameter vector is

$$\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)' \in \mathcal{A}$$

where
$$A = (0, \infty)^4 \times (0, 1)$$
.

More generally, one can fit a mixture of K>2 Gamma distributions. The appropriate model can be selected according to information criteria such as the BIC.

The binary vector $I = (I_1, ..., I_n)$ contains the (latent) cure indicators, that is, $I_i = 1$ if the *i*-th subject is susceptible and $I_i = 0$ if the *i*-th subject is cured. Δ_0 denotes the subset of $\{1, ..., n\}$

containing the censored subjects, whereas $\Delta_1 = \Delta_0^c$ is the (complementary) subset of uncensored subjects. The complete likelihood of the model is

$$L_c(\boldsymbol{\theta};\boldsymbol{y},\boldsymbol{I}) = \prod_{i \in \Delta_1} (1 - p_0(\boldsymbol{x}_i,\boldsymbol{\theta})) f_U(y_i;\boldsymbol{\theta},\boldsymbol{x}_i) \prod_{i \in \Delta_0} p_0(\boldsymbol{x}_i,\boldsymbol{\theta})^{1 - I_i} \{ (1 - p_0(\boldsymbol{x}_i,\boldsymbol{\theta})) S_U(y_i;\boldsymbol{\theta},\boldsymbol{x}_i) \}^{I_i}.$$

 f_U and S_U denote the probability density and survival function of the susceptibles, respectively, that is

$$S_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{S_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}, f_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{f_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i)}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}.$$

Index of help topics:

cure_rate_MC3

bayesCureRateModel-package

Bayesian Cure Rate Modeling for Time-to-Event

complete_log_likelihood_general

Logarithm of the complete log-likelihood for

the general cure rate model. Main function of the package

The basic MCMC scheme. cure_rate_mcmc

log_dagum PDF and CDF of the Dagum distribution PDF and CDF of the Gamma distribution log_gamma

log_gamma_mixture PDF and CDF of a Gamma mixture distribution log_gompertz PDF and CDF of the Gompertz distribution PDF and CDF of the log-Logistic distribution. log_logLogistic

log_lomax PDF and CDF of the Lomax distribution PDF and CDF of the Weibull distribution log_weibull

marriage_dataset Marriage data plot.bayesCureModel Plot method print.bayesCureModel Print method

summary.bayesCureModel

Summary method.

Author(s)

Panagiotis Papastamoulis and Fotios S. Milienos

Maintainer: Panagiotis Papastamoulis <papapast@yahoo.gr>

References

Papastamoulis and Milienos (2023). Bayesian inference and cure rate modeling for event history data. arXiv:2310.06926

See Also

cure_rate_MC3

Examples

```
# TOY EXAMPLE (very small numbers... only for CRAN check purposes)
# simulate toy data
set.seed(1)
n = 4
stat = rbinom(n, size = 1, prob = 0.5)
x <- cbind(1, matrix(rnorm(n), n, 1))</pre>
y < - rexp(n)
# run a weibull model with default prior setup
# considering 2 heated chains
fit1 <- cure_rate_MC3(y = y, X = x, Censoring_status = stat,</pre>
promotion_time = list(distribution = 'weibull'),
nChains = 2,
nCores = 1,
mcmc_cycles = 3, sweep=2)
# print method
fit1
# summary method
summary1 <- summary(fit1)</pre>
# WARNING: the following parameters
  mcmc_cycles, nChains
#
         should take _larger_ values. E.g. a typical implementation consists of:
#
         mcmc_cycles = 15000, nChains = 12
\# run a Gamma mixture model with K = 2 components and default prior setup
fit2 <- cure_rate_MC3(y = y, X = x, Censoring_status = stat,</pre>
promotion_time = list(
distribution = 'gamma_mixture',
        K = 2),
nChains = 8, nCores = 2,
mcmc\_cycles = 10)
summary2 <- summary(fit2)</pre>
```

complete_log_likelihood_general

Logarithm of the complete log-likelihood for the general cure rate model.

Description

Compute the logarithm of the complete likelihood, given a realization of the latent binary vector of cure indicators I_sim and current values of the model parameters g, lambda, b and promotion time parameters (α) which yield log-density values (one per observation) stored to the vector log_f and log-cdf values stored to the vector log_f .

Usage

```
complete_log_likelihood_general(y, X, Censoring_status,
g, lambda, log_f, log_F, b, I_sim, alpha)
```

Arguments

y observed data (time-to-event or censored time)

X design matrix. Should contain a column of 1's if the model has a constant term.

Censoring_status

binary variables corresponding to time-to-event and censoring.

g The γ parameter of the model (real). lambda The λ parameter of the model (positive).

log_f A vector containing the natural logarithm of the density function of the pro-

motion time distribution per observation, for the current set of parameters. Its

length should be equal to the sample size.

log_F A vector containing the natural logarithm of the cumulative density function of

the promotion time distribution per observation, for the current set of parame-

ters. Its length should be equal to the sample size.

b Vector of regression coefficients. Its length should be equal to the number of

columns of the design matrix.

I_sim Binary vector of the current value of the latent cured status per observation. Its

length should be equal to the sample size. A time-to-event cannot be cured.

alpha A parameter between 0 and 1, corresponding to the temperature of the complete

posterior distribution.

Details

The complete likelihood of the model is

$$L_c(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{I}) = \prod_{i \in \Delta_1} (1 - p_0(\boldsymbol{x}_i, \boldsymbol{\theta})) f_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) \prod_{i \in \Delta_0} p_0(\boldsymbol{x}_i, \boldsymbol{\theta})^{1 - I_i} \{ (1 - p_0(\boldsymbol{x}_i, \boldsymbol{\theta})) S_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) \}^{I_i}.$$

 f_U and S_U denote the probability density and survival function of the susceptibles, respectively, that is

$$S_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{S_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}, f_U(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i) = \frac{f_P(y_i; \boldsymbol{\theta}, \boldsymbol{x}_i)}{1 - p_0(\boldsymbol{x}_i; \boldsymbol{\theta})}.$$

Value

A list with the following entries

cll the complete log-likelihood for the current parameter values.

logS Vector of logS values (one for each observation).

logP0 Vector of logP0 values (one for each observation).

Author(s)

Panagiotis Papastamoulis

cure_rate_MC3 7

References

Papastamoulis and Milienos (2023). Bayesian inference and cure rate modeling for event history data. arXiv:2310.06926.

Examples

```
# simulate toy data
set.seed(1)
n = 4
stat = rbinom(n, size = 1, prob = 0.5)
x <- cbind(1, matrix(rnorm(n), n, 1))
y <- rexp(n)
lw <- log_weibull(y, a1 = 1, a2 = 1, c_under = 1e-9)
# compute complete log-likelihood
complete_log_likelihood_general(y = y, X = x,
Censoring_status = stat,
g = 1, lambda = 1,
log_f = lw$log_f, log_F = lw$log_F,
b = c(-0.5,0.5),
I_sim = stat, alpha = 1)</pre>
```

cure_rate_MC3

Main function of the package

Description

Runs a Metropolis Coupled MCMC (MC³) sampler in order to estimate the joint posterior distribution of the model.

Usage

```
cure_rate_MC3(y, X, Censoring_status, nChains = 12, mcmc_cycles = 15000,
alpha = NULL,nCores = 8, sweep = 5, mu_g = 1, s2_g = 1,
a_l = 2.1, b_l = 1.1, mu_b = rep(0, dim(X)[2]),
Sigma = 100 * diag(dim(X)[2]), g_prop_sd = 0.045,
lambda_prop_scale = 0.03, b_prop_sd = rep(0.022, dim(X)[2]),
initialValues = NULL, plot = TRUE, adjust_scales = FALSE,
verbose = FALSE, tau_mala = 1.5e-05, mala = 0.15,
promotion_time = list(distribution = "weibull",
prior_parameters = matrix(rep(c(2.1, 1.1), 2), byrow = TRUE, 2, 2),
prop_scale = c(0.1, 0.2)), single_MH_in_f = 0.2)
```

Arguments

y Observed data, that is, a vector of length n with positive entries.

X Design matrix with k > 1 columns. Should contain a column of 1's if the model has a constant term. Should be a matrix with dimension $n \times k$.

8 cure_rate_MC3

Censoring_status

A vector $\boldsymbol{\delta} = (\delta_1, \dots, \delta_n)$ of binary variables corresponding to censoring indicators. The *i*-th observation is treated as a time-to-event if $\delta_i = 1$ or as a consoring time otherwise $(\delta_i = 0)$

censoring time otherwise ($\delta_i = 0$).

nChains Positive integer corresponding to the number of heated chains in the MC³ scheme.

mcmc_cycles Length of the generated MCMC sample. Default value: 15000. Note that each

MCMC cycle consists of sweep (see below) usual MCMC iterations.

alpha A decreasing sequence in [1,0) of nChains temperatures (or heat values). The

first value should always be equal to 1, which corresponds to the target posterior

distribution (that is, the first chain).

nCores The number of cores used for parallel processing.

sweep The number of usual MCMC iterations per MCMC cycle. Default value: 10.

mu_g Parameter a_{γ} of the prior distribution of γ . s2_g Parameter b_{γ} of the prior distribution of γ .

a_1 Shape parameter a_{λ} of the Inverse Gamma prior distribution of λ .

b_1 Scale parameter b_{λ} of the Inverse Gamma prior distribution of λ .

mu_b Mean (μ) of the multivariate normal prior distribution of regression coefficients.

Should be a vector whose length is equal to k, i.e. the number of columns of the

design matrix X. Default value: rep(0, k).

Sigma Covariance matrix of the multivariate normal prior distribution of regression

coefficients.

lambda_prop_scale

The scale of the proposal distribution for single-site updates of the λ parameter.

b_prop_sd The scale of the proposal distribution for the update of the β parameter (regres-

sion coefficients).

initial Values A list of initial values for each parameter (optional).

plot Plot MCMC sample on the run. Default: TRUE.

adjust_scales Boolean. If TRUE the MCMC sampler runs an initial phase of a small num-

ber of iterations in order to tune the scale of the proposal distributions in the

Metropolis-Hastings steps.

verbose Print progress on the terminal if TRUE.

tau_mala Scale of the Metropolis adjusted Langevin diffussion proposal distribution.

mala A number between [0, 1] indicating the proportion of times the sampler attempts

a MALA proposal. Thus, the probability of attempting a typical Metropolis-

Hastings move is equal to 1 - mala.

promotion_time A list with details indicating the parametric family of distribution describing the

promotion time and corresponding prior distributions. See 'details'.

single_MH_in_f The probability for attempting a series of single site updates in the typical Metropolis-

Hastings move. Otherwise, with probability 1 - single_MH_in_f a Metropolis-Hastings move will attempt to update all continuous parameters simultaneously.

It only makes sense when mala < 1.

cure_rate_MC3

Details

It is advised to scale all continuous explanatory variables in the design matrix, so their sample mean and standard deviations are equal to 0 and 1, respectively. The promotion_time argument should be a list containing the following entries

distribution Character string specifying the family of distributions $\{F(\cdot; \alpha); \alpha \in A\}$ describing the promotion time.

prior_parameters Values of hyper-parameters in the prior distribution of the parameters α .

prop_scale The scale of the proposal distributions for each parameter in α .

dirichlet_concentration_parameter Relevant only in the case of the 'gamma_mixture'. Positive scalar (typically, set to 1) determining the (common) concentration parameter of the Dirichlet prior distribution of mixing proportions.

The distribution entry should be one of the following: 'exponential', 'weibull', 'gamma', 'logLogistic', 'gompertz', 'lomax', 'dagum', 'gamma_mixture'.

The joint prior distribution of $\alpha = (\alpha_1, \dots, \alpha_d)$ factorizes into products of inverse Gamma distributions for all (positive) parameters of F. Moreover, in the case of 'gamma_mixture', the joint prior also consists of another term to the Dirichlet prior distribution on the mixing proportions.

The prop_scale argument should be a vector with length equal to the length of vector d (number of elements in α), containing (positive) numbers which correspond to the scale of the proposal distribution. Note that these scale parameters are used only as initial values in case where adjust_scales = TRUE.

Value

An object of class bayesCureModel, i.e. a list with the following entries

mcmc_sample

Object of class mcmc (see the **coda** package), containing the generated MCMC sample for the target chain. The column names correspond to

g_mcmc Sampled values for parameter γ

lambda_mcmc Sampled values for parameter λ

alpha1_mcmc... Sampled values for parameter α_1 ... of the promotion time distribution $F(\cdot; \alpha_1, \ldots, \alpha_d)$. The subsequent d-1 columns contain the sampled values for all remaining parameters, $\alpha_2, \ldots, \alpha_d$, where d depens on the family used in promotion_time.

b0_mcmc Sampled values for the constant term of the regression (present only in the case where the design matrix X contains a column of 1s).

b1_mcmc... Sampled values for the regression coefficient for the first explanatory variable, and similar for all subsequent columns.

complete_log_likelihood

The complete log-likelihood for the target chain.

all_cll_values The complete log-likelihood for all chains

latent_status_censored

A data frame with the simulated binary latent status for each censored item.

swap_accept_rate

the acceptance rate of proposed swappings between adjacent MCMC chains.

10 cure_rate_mcmc

```
input_data_and_model_prior
```

the input data and specification of the prior parameters.

log_posterior the logarithm of the posterior distribution, up to a normalizing constant.

map_estimate The Maximum A Posterior estimate of parameters

BIC Bayesian Information Criterion.

Note

The core function is cure_rate_mcmc.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2023). Bayesian inference and cure rate modeling for event history data. arXiv:2310.06926

See Also

```
cure_rate_mcmc
```

Examples

cure_rate_mcmc

The basic MCMC scheme.

Description

This is core MCMC function. The continuous parameters of the model are updated using (a) single-site Metropolis-Hastings steps and (b) a Metropolis adjusted Langevin diffusion step. The binary latent variables of the model (cured status per censored observation) are updated according to a Gibbs step. This function is embedded to the main function of the package cure_rate_MC3 which runs parallel tempered MCMC chains.

cure_rate_mcmc 11

Usage

```
cure_rate_mcmc(y, X, Censoring_status, m, alpha = 1, mu_g = 1, s2_g = 1,
a_l = 2.1, b_l = 1.1, promotion_time = list(distribution = "weibull",
prior_parameters = matrix(rep(c(2.1, 1.1), 2), byrow = TRUE, 2, 2),
prop_scale = c(0.2, 0.03)), mu_b = NULL, Sigma = NULL, g_prop_sd = 0.045,
lambda_prop_scale = 0.03, b_prop_sd = NULL, initialValues = NULL,
plot = FALSE, verbose = FALSE, tau_mala = 1.5e-05, mala = 0.15,
single_MH_in_f = 0.5)
```

Arguments

y observed data (time-to-event or censored time)

X design matrix. Should contain a column of 1's if the model has a constant term.

Censoring_status

binary variables corresponding to time-to-event and censoring.

m number of MCMC iterations.

alpha A value between 0 and 1, corresponding to the temperature of the complete

posterior distribution. The target posterior distribution corresponds to alpha =

1.

mu_g Parameter a_{γ} of the prior distribution of γ . s2_g Parameter b_{γ} of the prior distribution of γ .

a_1 Shape parameter a_{λ} of the Inverse Gamma prior distribution of λ .

b_1 Scale parameter b_{λ} of the Inverse Gamma prior distribution of λ .

promotion_time A list containing the specification of the promotion time distribution. See 'de-

tails'.

mu_b Mean μ of the multivariate normal prior distribution of regression coefficients.

Should be a vector whose length is equal to the number of columns of the design

matrix X.

Sigma Covariance matrix of the multivariate normal prior distribution of regression

coefficients.

g_prop_sd The scale of the proposal distribution for single-site updates of the γ parameter.

lambda_prop_scale

The scale of the proposal distribution for single-site updates of the λ parameter.

b_prop_sd The scale of the proposal distribution for the update of the β parameter (regres-

sion coefficients).

initialValues A list of initial values for each parameter (optional).

plot Boolean for plotting on the run.

verbose Boolean for printing progress on the run.

tau_mala scale of the MALA proposal.

mala Propability of attempting a MALA step. Otherwise, a simple MH move is at-

tempted.

single_MH_in_f Probability of attempting a single-site MH move in the basic Metropolis-Hastings

step. Otherwise, a joint update is attempted.

12 cure_rate_mcmc

Value

A list containing the following entries

mcmc_sample The sampled MCMC values per parameter. See 'note'. complete_log_likelihood

Logarithm of the complete likelihood per MCMC iteration.

acceptance_rates

The acceptance rate per move.

latent_status_censored

The MCMC sample of the latent status per censored observation.

log_prior_density

Logarithm of the prior density per MCMC iteration.

Note

In the case where the promotion time distribution is a Gamma mixture model, the mixing proportions w_1, \ldots, w_K are reparameterized according to the following transformation

$$w_j = \frac{\rho_j}{\sum_{i=1}^K \rho_i}, j = 1, \dots, K$$

where $\rho_i > 0$ for $i = 1, \dots, K-1$ and $\rho_K = 1$. The sampler returns the parameters $\rho_1, \dots, \rho_{K-1}$, not the mixing proportions.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2023). Bayesian inference and cure rate modeling for event history data. arXiv:2310.06926

See Also

```
cure_rate_MC3
```

log_dagum 13

```
prior\_parameters = matrix(rep(c(2.1, 1.1), 2), \\ byrow = TRUE, 2, 2), \\ prop\_scale = c(0.1, 0.1) \\ ), \\ m = 10) \\ \# \ the \ generated \ mcmc \ sampled \ values \\ fit1$mcmc\_sample
```

log_dagum

PDF and CDF of the Dagum distribution

Description

The Dagum distribution as evaluated at the VGAM package.

Usage

```
log_dagum(y, a1, a2, a3, c_under = 1e-09)
```

Arguments

У	observed data
a1	scale parameter
a2	shape1.a parameter
a3	shape2.p parameter
c_under	A small positive value corresponding to the underflow threshold, e.g. c_under = 1e-9.

Details

The Dagum distribution is a special case of the 4-parameter generalized beta II distribution.

Value

A list containing the following entries

log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.

Author(s)

Panagiotis Papastamoulis

References

Thomas W. Yee (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. New York, USA: Springer.

log_gamma

See Also

ddagum

Examples

```
log_dagum(y = 1:10, a1 = 1, a2 = 1, a3 = 1, c_under = 1e-9)
```

log_gamma

PDF and CDF of the Gamma distribution

Description

Computes the pdf and cdf of the Gamma distribution.

Usage

```
log_gamma(y, a1, a2, c_under = 1e-09)
```

Arguments

y observed data a1 shape parameter a2 rate parameter

c_under A small positive value corresponding to the underflow threshold, e.g. c_under =

1e-9.

Value

A list containing the following entries

log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.

Author(s)

Panagiotis Papastamoulis

See Also

dgamma

```
log_gamma(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

log_gamma_mixture 15

 $log_gamma_mixture$

PDF and CDF of a Gamma mixture distribution

Description

Computes the logarithm of the probability density function and cumulative density function per observation for each observation under a Gamma mixture model.

Usage

```
log_gamma_mixture(y, a1, a2, p, c_under = 1e-09)
```

Arguments

У	observed data
a1	vector containing the shape parameters of each Gamma mixture component
a2	vector containing the rate parameters of each Gamma mixture component
p	vector of mixing proportions
c_under	threshold for underflows.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

```
y <- runif(10)
a1 <- c(1,2)
a2 <- c(1,1)
p <- c(0.9,0.1)
log_gamma_mixture(y, a1, a2, p)</pre>
```

log_gompertz

log	gompertz
TOR-	_gomper tz

PDF and CDF of the Gompertz distribution

Description

The Gompertz distribution as evaluated at the **flexsurv** package.

Usage

```
log_gompertz(y, a1, a2, c_under = 1e-09)
```

Arguments

У	observed data
a1	shape parameter
a2	rate parameter

c_under A small positive value corresponding to the underflow threshold, e.g. c_under =

1e-9.

Value

A list containing the following entries

log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.

Author(s)

Panagiotis Papastamoulis

References

Christopher Jackson (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

See Also

```
dgompertz
```

```
log_gompertz(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

log_logLogistic 17

100	100	logi	ctic
TOR_	TOR	LOSI	stic

PDF and CDF of the log-Logistic distribution.

Description

The log-Logistic distribution as evaluated at the **flexsurv** package.

Usage

```
log_logLogistic(y, a1, a2, c_under = 1e-09)
```

Arguments

У	observed data
a1	shape parameter
a2	scale parameter
c_under	A small positive value corresponding to the underflow threshold, e.g. c_under = 1e-9.

Details

The log-logistic distribution is the probability distribution of a random variable whose logarithm has a logistic distribution.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

References

Christopher Jackson (2016). flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software, 70(8), 1-33. doi:10.18637/jss.v070.i08

See Also

```
dllogis
```

```
log_logLogistic(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

log_lomax

-	-	
Ina	Loma	v
TOE	TOIIIa.	Л

PDF and CDF of the Lomax distribution

Description

The Lomax distribution as evaluated at the **VGAM** package.

Usage

```
log_lomax(y, a1, a2, c_under = 1e-09)
```

Arguments

У	observed data
a1	scale parameter
a2	shape parameter

c_under A small positive value corresponding to the underflow threshold, e.g. c_under =

1e-9.

Details

The Lomax distribution is a special case of the 4-parameter generalized beta II distribution.

Value

A list containing the following entries

log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.

Author(s)

Panagiotis Papastamoulis

References

Thomas W. Yee (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. New York, USA: Springer.

See Also

dlomax

```
log_lomax(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

log_weibull 19

log		1	ъ	7
$1 \cap \sigma$	M = 1	nu		
TOE	MCT	υu	_	_

PDF and CDF of the Weibull distribution

Description

Computes the log pdf and cdf of the weibull distribution.

Usage

```
log_weibull(y, a1, a2, c_under)
```

Arguments

у	observed data
a1	shape parameter
a2	rate parameter
c_under	A small positive value corresponding to the underflow threshold, e.g. c_under = 1e-9.

Value

A list containing the following entries

```
log_f natural logarithm of the pdf, evaluated at each datapoint.log_F natural logarithm of the CDF, evaluated at each datapoint.
```

Author(s)

Panagiotis Papastamoulis

```
log_weibull(y = 1:10, a1 = 1, a2 = 1, c_under = 1e-9)
```

20 plot.bayesCureModel

marriage_dataset

Marriage data

Description

The variable of interest (time) corresponds to the duration (in years) of first marriage for 1500 individuals. The available covariates are:

age age of respondent (in years) at the time of fist marriage.

kids factor: whether there were kids during the first marriage (1) or not (0).

race race of respondent decoded as: black (1), hispanic (2) and non-black/non-hispanic (4).

Among the 1500 observations, there are 1018 censoring times (censoring = 0) and 482 divorces (censoring = 1). Source: National Longitudinal Survey of Youth 1997 (NLSY97).

Usage

```
data(marriage_dataset)
```

Format

Time-to-event data.

References

Bureau of Labor Statistics, U.S. Department of Labor. National Longitudinal Survey of Youth 1997 cohort, 1997-2022 (rounds 1-20). Produced and distributed by the Center for Human Resource Research (CHRR), The Ohio State University. Columbus, OH: 2023.

plot.bayesCureModel

Plot method

Description

Plots and computes HDIs.

Usage

```
## S3 method for class 'bayesCureModel'
plot(x, burn = NULL, alpha = 0.05, gamma_mix = TRUE,
K_gamma = 5, plot_graphs = TRUE, bw = "nrd0", what = NULL, p_cured_output = NULL,
index_of_main_mode = NULL,...)
```

plot.bayesCureModel 21

Arguments

x An object of class bayesCureModel

burn Number of iterations to discard as burn-in period.

alpha A value between 0 and 1 in order to compute the 1- α Highest Posterior Density

regions.

gamma_mix Boolean. If TRUE, the density of the marginal posterior distribution of the γ pa-

rameter is estimated from the sampled MCMC values by fitting a normal mixture

model.

K_gamma Used only when gamma_mix = TRUE and corresponds to the number of normal

mixture components used to estimate the marginal posterior density of the γ

parameter.

plot_graphs Boolean, if FALSE only HDIs are computed.

bw bandwidth

what Integer indicating which parameter should be plotted. If set to NULL (default),

all parameters are plotted one by one. If set to 'cured_prob' the estimated cured probability is plotted, conditional on a set of covariates defined in the

p_cured_output argument.

p_cured_output Optional argument (list) which is required only when what = 'cured_prob'. It

is returned by the summary.bayesCureRateModel function.

index_of_main_mode

If NULL (default), all modes are plotted. Otherwise, it is a subset of the retained MCMC iterations in order to identify the main mode of the posterior distribution, as returned by the index_of_main_mode value of the summary.bayesCureRateModel

function.

... arguments passed by other methods.

Value

The function plots graphic output on the plot device if plot_graphs = TRUE. Furthermore, a list of $100(1-\alpha)\%$ Highest Density Intervals per parameter is returned.

Author(s)

Panagiotis Papastamoulis

```
# simulate toy data just for cran-check purposes
    set.seed(1)
    n = 4
    stat = rbinom(n, size = 1, prob = 0.5)
    # simulate design matrix
    # first column consists of 1s (const)
    # and second and third column contain
    # the values of two covariates
    x <- cbind(1, matrix(rnorm(2*n), n, 2))</pre>
```

22 print.bayesCureModel

```
colnames(x) \leftarrow c('const', 'x1', 'x2')
        y \leftarrow rexp(n)
fit1 <- cure_rate_MC3(y = y, X = x, Censoring_status = stat,</pre>
promotion_time = list(distribution = 'exponential'),
nChains = 2, nCores = 1,
mcmc\_cycles = 3, sweep = 2)
# plot the marginal posterior distribution of the first parameter in returned mcmc output
plot(fit1, what = 1, burn = 0)
# using 'cured_prob'
#compute cured probability for two individuals with
# x1 = 0.2 and x2 = -1
# and
\# x1 = -1 \text{ and } x2 = 0
covariate_levels1 <- rbind(c(1,0.2,-1), c(1,-1,0))
summary1 <- summary(fit1, covariate_levels = covariate_levels1, burn = 0)</pre>
plot(fit1, what='cured_prob', p_cured_output = summary1$p_cured_output,
  ylim = c(0,1))
```

Description

This function prints a summary of objects returned by the cure_rate_MC3 function.

Usage

```
## S3 method for class 'bayesCureModel'
print(x, ...)
```

Arguments

x An object of class bayesCureModel, which is returned by the cure_rate_MC3 function.ignored.

Details

The function prints some basic information for a cure_rate_MC3, such as the MAP estimate of model parameters and the value of Bayesian information criterion.

Value

No return value, called for side effects.

Author(s)

Panagiotis Papastamoulis

```
summary.bayesCureModel
```

Summary method.

Description

This function produces all summaries after fitting a cure rate model.

Usage

```
## S3 method for class 'bayesCureModel'
summary(object, burn = NULL, gamma_mix = TRUE,
K_{gamma} = 3, K_{max} = 3, fdr = 0.1,
covariate_levels = NULL, yRange = NULL, alpha = 0.1, ...)
```

Arguments

K_max

fdr

object	An object of class bayesCureModel
burn	Positive integer corresponding to the number of mcmc iterations to discard as burn-in period
gamma_mix	Boolean. If TRUE, the density of the marginal posterior distribution of the γ parameter is estimated from the sampled MCMC values by fitting a normal mixture model.
K_gamma	Used only when gamma_mix = TRUE and corresponds to the number of normal

Used only when gamma_mix = TRUE and corresponds to the number of normal mixture components used to estimate the marginal posterior density of the γ parameter.

Maximum number of components in order to cluster the (univariate) values of the joint posterior distribution across the MCMC run. Used to identify the main mode of the posterior distribution. See details.

The target value for controlling the False Discovery Rate when classifying subjects as cured or not.

covariate_levels

Optional levels for the covariates. It is only required when the user wishes to obtain a vector with the estimated posterior cured probabilities for a given combination of covariates. Include the value "1" in the case where the model contains

constant term.

Optional range (a vector of two non-negative values) for computing the sequence yRange

of posterior probabilities for the given values in covariate_levels.

alpha Scalar between 0 and 1 corresponding to 1 - confidencel level for computing

Highest Density Intervals. If set to NULL, the confidence intervals are not com-

puted.

ignored.

Details

The values of the posterior draws are clustered according to a (univariate) normal mixture model, and the main mode corresponds to the cluster with the largest mean. The maximum number of mixture components corresponds to the K_max argument. The **mclust** library is used for this purpose. The inference for the latent cure status of each (censored) observation is based on the MCMC draws corresponding to the main mode of the posterior distribution. The FDR is controlled according to the technique proposed in Papastamoulis and Rattray (2018).

In case where covariate_levels is set to TRUE, the summary function also returns a list named p_cured_output with the following entries

mcmc It is returned only in the case where the argument covariate_values is not NULL. A vector of posterior cured probabilities for the given values in covariate_values, per retained MCMC draw.

map It is returned only in the case where the argument covariate_values is not NULL. The cured probabilities computed at the MAP estimate of the parameters, for the given values covariate_values.

tau_values tau values

covariate levels covariate levels

index_of_main_mode the subset of MCMC draws allocated to the main mode of the posterior distribution.

Value

A list with the following entries

map_estimate Maximum A Posteriori (MAP) estimate of the parameters of the model.

highest_density_intervals

Highest Density Interval per parameter

latent_cured_status

Estimated posterior probabilities of the latent cure status per censored subject.

cured_at_given_FDR

Classification as cured or not, at given FDR level.

p_cured_output It is returned only in the case where the argument covariate_values is not NULL. See details.

main_mode_index

The retained MCMC iterations which correspond to the main mode of the posterior distribution.

Author(s)

Panagiotis Papastamoulis

References

Papastamoulis and Milienos (2023). Bayesian inference and cure rate modeling for event history data. arXiv:2310.06926.

Papastamoulis and Rattray (2018). A Bayesian Model Selection Approach for Identifying Differentially Expressed Transcripts from RNA Sequencing Data, Journal of the Royal Statistical Society Series C: Applied Statistics, Volume 67, Issue 1.

Scrucca L, Fraley C, Murphy TB, Raftery AE (2023). Model-Based Clustering, Classification, and Density Estimation Using mclust in R. Chapman and Hall/CRC. ISBN 978-1032234953

See Also

```
cure_rate_MC3
```

Index

```
* datasets
    marriage_dataset, 20
* package
    bayesCureRateModel-package, 2
bayesCureRateModel
        (bayesCureRateModel-package), 2
{\tt bayesCureRateModel-package, 2}
complete_log_likelihood_general, 5
cure_rate_MC3, 2, 4, 7, 10, 12, 25
cure_rate_mcmc, 10, 10
ddagum, 14
dgamma, 14
dgompertz, 16
dllogis, 17
dlomax, 18
log_dagum, 13
log_gamma, 14
log_gamma_mixture, 15
log\_gompertz, 16
log_logLogistic, 17
log_lomax, 18
log_weibull, 19
\texttt{marriage\_dataset}, \textcolor{red}{20}
plot.bayesCureModel, 20
print.bayesCureModel, 22
summary.bayesCureModel, 23
```