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1 History of the package adehabitatHS

The package adehabitatHS contains functions dealing with the analysis of
habitat selection by the wildlife that were originally available in the package
adehabitat (Calenge, 2006). The data used for such analysis are generally re-
location data collected on animals monitored using VHF or GPS collars, as well
as habitat data (available as maps).

I developped the package adehabitat during my PhD (Calenge, 2005) to
make easier the analysis of habitat selection by animals. The package adehabitat
was designed to extend the capabilities of the package ade4 concerning studies
of habitat selection by wildlife.

Since its first submission to CRAN in September 2004, a lot of work has
been done on the management and analysis of spatial data in R, and especially
with the release of the package sp (Pebesma and Bivand, 2005). The package
sp provides classes of data that are really useful to deal with spatial data...

In addition, with the increase of both the number (more than 250 functions
in Oct. 2008) and the diversity of the functions in the package adehabitat, it
soon became apparent that a reshaping of the package was needed, to make its
content clearer to the users. I decided to “split” the package adehabitat into
four packages:

• adehabitatHR package provides classes and methods for dealing with
home range analysis in R.

• adehabitatHS package provides classes and methods for dealing with habi-
tat selection analysis in R.

• adehabitatLT package provides classes and methods for dealing with an-
imals trajectory analysis in R.

• adehabitatMA package provides classes and methods for dealing with maps
in R.
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We consider in this document the use of the package adehabitatHS to deal
with habitat selection analysis. All the methods available in adehabitat are
also available in adehabitatHS. Note that the classes of data returned by the
functions of adehabitatHS are identical to the classes returned by the same
functions in adehabitat.

Package adehabitatHS is loaded by

> library(adehabitatHS)

2 Basic concepts

2.1 Use and availability

The package adehabitatHS aims at making easier the exploration of habitat
selection by the wildlife.

According to a common definition, habitat corresponds to the resources and
conditions present in an area that produce occupancy – including survival and
reproduction – by a given organism (Hall et al. 1997). The aim of habitat selec-
tion studies is often to identify the environmental characteristics (e.g., biomass,
slope) that make a place suitable for a species.

Theoretically, the distinction between habitat and non-habitat implies the
comparison of the environmental composition of sites where the species is present
with the environmental composition of sites where the species is absent. How-
ever, sites where the species is absent may be practically difficult to identify.
Indeed, a species may not appear in a site if sampling failed to identify it (e.g.
detection probability lower than 1), if the species is absent from the site or his-
torical reasons, or if the environmental characteristics do not define a habitat.
Therefore, the analysis of habitat selection often relies on the comparison of a
sample of used sites (sites where the species is present) with a sample of avail-
able sites (sites where the species presence is uncertain, but where we consider
that it could be present). We describe several tools in this vignette to deal with
such data in this context.

We will consider that the study area can be discretized into resource units

(RU, which may correspond to pixels of a raster map, or to patches of a vector
map, see Manly et al., 2002, for a deeper discussion on this concept). Each RU
is characterized by several environmental variables (elevation, slope, biomass,
etc.). In habitat selection studies, the environmental variables should

be carefully chosen according to the biological issue at hand.

We will suppose that we have either censused, or collected a sample of, re-
source units available to the species on the study area. An important point is
that we consider that these RUs are available. In other words, the definition
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of the availability is necessarily subjective and depends on the issue at hand (it
is not a property of the studied system). Each available RU may be character-
ized by an availability weight describing how the RU is available to the species.
For example, these weights may be useful when the RUs correspond to habitat
patches and that all patches do not cover the same surface area (this area is
then used as an availability weight).

Moreover, we have measured the use of the available RUs by the species.
This use may be measured by many different ways (see the concept of “currency
of use” by Bingham and Brennan, 2004). For example, it may correspond to
the number of animals detected in each pixel of a raster map. We suppose a
uniform sampling effort and a uniform detection probability.

2.2 Three types of designs

Thomas and Taylor (1993) distinguished three types of design used in the study
of habitat selection.

In design I studies, the animals are not identified; the habitat use and avail-
ability are measured at the scale of the population. For example, a sample of
sites (the RUs) is drawn on a given area and each site is investigated to deter-
mine whether the species used it (e.g. presence of animals, presence of feces,
etc.). That is, the basic data structure for this kind of design is:

where X is the table containing the value of the P environmental variables for
the N RUs, and a and u are vectors containing respectively the availability
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weights and the utilization weights of the N RUs.

In design II studies, the animals are identified and the use is measured for
each one. For example, a sample of animals is captured on an area, and each
one is fitted with a radio-collar. The animals are then monitored using radio-
tracking, so that it is possible to estimate the habitat use for each one (e.g. by
the proportion of relocations falling in each RU). However, the availability is
measured at the scale of the population (each RU is supposed equally available
to all monitored animals). The data structure is therefore the following:

where X is the table containing the value of the P environmental variables for
the N RUs, a is the vector containing the availability weights associated to the
n RUs, and U is the matrix containing the utilization weights of each RU (rows)
by the K animals (columns).

In design III studies, the animals are identified and both the use and the
availability are measured for each one. That is, all the RUs are not supposed
to be equally available to all animals, so that the availability weights vary from
one animal to the other. For example, a sample of animals is captured on an
area, and each one is fitted with a radio-collar. The animals are then moni-
tored using radio-tracking. For each animal, the available RUs correspond to
the pixels falling inside the limits of the minimum convex polygon enclosing all
its relocations (these available RUs are therefore specific to each animal). The
used RUs correspond to the pixels containing at least one relocation, and the
utilization weights correspond to the the proportion of relocations falling in each
RU:
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where Xi contains the value of the P environment variables in the Ni RUs
available to the animal i, ai contains the availability weights for the animal i,
and ui contains the utilization weights for the animal i.

2.3 The concept of ecological niche

The ecological niche is a useful model to understand the methods available in
adehabitatHS. The seminal paper of Hutchinson (1957) defined it as the hyper-
volume, in the multidimensional space defined by the environmental variables,
where the species can potentially maintain a viable population. Although this
definition has been debated and precised by many authors (e.g. Chase and Leib-
hold, 2003), the original definition of the niche is useful for us as most ecologists
are already familiar with it. Therefore, we use this definition beyond the limits
of the original conceptual framework in which it was developed, i.e. to study
habitat selection.

For example, imagine that we are studying habitat selection of a species on
a given area. Moreover, P environmental variables have been mapped on this
area. Suppose that these maps are raster maps, so that the N RUs correspond
to the pixels of the maps. Suppose that we have prospected the study area so
that we know the position of all the individuals belonging to a given species.
The P environmental variables define a P -dimensional space. We will refer to
this space as the ecological space. Because each RU is characterized by a measure
on each environmental variable, it follows that each RU corresponds to a point
in this space:

6



On this figure, the ecological space is defined by only three variables (V1, V2, V3),
but the mathematical concept is still valid for a larger number of variables. The
grey points correspond to the RUs available on the study area. A subset of RUs
have been used by the species (i.e. the species is present in it; red points on
the figure). We will refer to the corresponding subset of points in the ecological
space as the “niche” of the species on this area.

The concept of niche, as defined here, is a useful model to tackle the study
of habitat selection. Indeed, many tools available in the package adehabitatHS

are implementations of methods allowing to compare the shape of the niche
with the shape of the distribution of available points. Although the methods
allow to take into account unequal utilization weights and unequal availability
weights, thinking in terms of “niche” as defined here (same utilization weights
for all used RUs and same availability weights for all available RUs) is a very
useful way to understand the methods provided by adehabitatHS.

2.4 Marginality and specialization

Two concepts are useful for the study of the niche: the marginality and the
specialization. Consider the niche model described in the previous section:

• The marginality vector correspond to the vector connecting the cen-
troid (i.e., the mean) of the distribution of availability weights to the
centroid of the distribution of utilization weights. The squared length of
this vector is the marginality per se. For example, consider the data
structure corresponding to design I studies (section 2.2). The marginality
vector is calculated by m = Xtu−Xta. And the marginality is equal to
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m2 = ||m||2.

• The specialization is a measure of habitat selection on a particular direc-
tion of the ecological space. For example, consider the variable yi giving
the values of an environmental variable in the RU i. The specialization is
defined as:

S2 =

∑N

i=1
ai(yi −

∑N

j=1
aiyi)

2

∑N

i=1
ui(yi −

∑N

j=1
uiyi)2

where ai and ui are respectively the availability weight and the utilization
weight of the RU i. In other words, the specialization is the ratio of the
variance of availability weights divided by the variance of the utilization
weights. A strong specialization implies that the variance of available RUs
is large in comparison with the variance of used RUs. Or, in other words,
that the niche is narrow in comparison to what is available to the species.

We will make use of these two concepts in this vignette.

3 Design I studies

3.1 Basic approach

The aim of adehabitatHS is to provide tools for the exploration of habitat
selection. We have seen in section 2.2 that the basic data structure for design I
studies is built by a table X containing the value of the environmental variables
in each available RU, and vectors a and u containing respectively the availability
weights and the utilization weights for each RU. That is, our data structure is
the following:
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Each RU defines a point in the multidimensional space defined by the envi-
ronmental variables (ecological space). To each point is associated an available
weight (in the vector a) and an utilization weight (in the vector u). The set
of points for which the utilization weights are greater than 0 define the niche
of the species (as defined in section 2.3). Our aim is to identify the differences
between the two distributions of weights, and to relate these differences with
particular directions of the ecological space.

To identify these differences, we will use graphical methods. Indeed, as
noted by Cleveland (1993), “Visualisation is critical to data analysis. It pro-

vides a front line of attack, revealing intricate structure in data that cannot be

absorbed in any other way. We discover unimagined effects, and we challenge

imagined ones”. However, because the ecological space is generally highly mul-
tidimensional, it is hard to explore it with classical graphical methods. For this
reason, the package adehabitatHS provides several tools relying on factor anal-
ysis, to find the most “interesting” directions on which most of the differences
between the two distributions of weights are expressed.
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3.2 The general framework for the statistical exploration

of the niche

3.2.1 Presentation of the GNESFA

All the factor analyses available in adehabitatHS to explore the differences be-
tween the habitat use and habitat availability in design I studies can be viewed
as particular cases of a general framework named General Niche-Environment

System Factor Analysis (GNESFA). This framework is described in detail in
Calenge and Basille (2008).

The basic principle of this analysis consists in the choice of one of these two
distributions, either the utilization weights or the availability weights, as the
Reference distribution, and the other, as the Focus distribution.

One will then “distort” the cloud of points, so that the Reference distri-
bution takes a standard spherical shape in the multidimensional space (this
is sometimes named “sphering” the data). Then, the GNESFA searches for
the directions where the Focus distribution differs the most from this standard
spherical shape (by performing a noncentred principal component analysis of
the “sphered” data, using the Focus distribution as row weight). This analysis
finds the direction on which the following criterion in maximized:

γ1 =

∑N

i=1
fi(yi − ȳr)

2

∑N

i=1
ri(yi − ȳr)2

fi and ri are respectively the focus and reference weights (depending on which
distribution of weights – utilization or availability – has been chosen as a ref-
erence). yi is the score of the ith RU on the first axis of the GNESFA. And,
finally, ȳr is the “reference mean” of these scores, that is:

ȳr =

N
∑

i=1

riyi

In other words, the GNESFA searches the values b1, b2, ...bp such that:

• yi = b1Xi1 + b2Xi2 + ...+ bpXip

•

∑p

i=1
b2i = 1

• γ1 is maximized

and such that the successive axes are uncorrelated. The GNESFA provides a
very flexible framework to tackle the exploration of habitat selection, and the
analysis has properties that depends on the distribution chosen as a reference.
Calenge and Basille (2008) describes more completely the interesting properties
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of this approach.

In this vignette, we will illustrate these properties and the practical use of
the GNESFA with an example. First load the dataset bauges from the package
adehabitatHS:

> data(bauges)

> names(bauges)

[1] "map" "locs"

This data set contains the map of 7 environmental variables in the Bauges
Mountains (French Alps):

> map <- bauges$map

> mimage(map)

The maps are stored as an object of class SpatialPixelsDataFrame from
the package sp. Furthermore, this dataset also contains the relocations of 198
chamois groups collected by volunteers and professionals working in various
French wildlife and forest management, from 1994 to 2004:

> image(map)

> locs <- bauges$locs

> points(locs, pch=3)
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These relocations are stored as an object of class SpatialPointsDataFrame
from the package sp. We now compute the utilization weights associated to each
pixel of the map, by numbering the locations of chamois groups in each pixel
of the map. This is done using the function count.points from the package
ademaps:

> cp <- count.points(locs, map)

Because all the pixels cover the same area, we will consider that they all
have the same availability weights (i.e., 1

N
). Now, we “unspatialize” the required

elements:

> tab <- slot(map, "data")

> pr <- slot(cp, "data")[,1]

These two elements are:

• tab: a data frame containing the value of the environmental variables in
each pixel of the map;

• pr: a vector containing the utilization weights associated to each pixel;

First, let us have a look at the distribution of the environmental variables
on the area, as well as the distribution of the animals:

> histniche(tab, pr)
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The white histograms show the distributions of available RUs, whereas the
grey histograms show the distributions of used RUs. We already highlight a
strong selection for high elevation values, high grass cover, high density of fallen
rocks and low deciduous cover. Let us perform a GNESFA to summarize these
structures.

3.2.2 A preliminary dudi.* analysis

We use for this the function gnesfa:

> args(gnesfa)

function (dudi, Focus, Reference, centering = c("single", "twice"),

scannf = TRUE, nfFirst = 2, nfLast = 0)

NULL

The help page of this function indicates that it takes as main argument an
object of class dudi. This class is defined in the package ade4 (Chessel et al.
2004), and is designed to store the results of factor analyses provided by this
package. We use the functions of the package ade4 as a preliminary

step to prepare the data tables for the analysis. Three main functions
are of interest for us:

• dudi.pca: performs a principal component analysis of the data frame
passed as argument;

• dudi.acm: performs a multiple correspondence analysis of the data frame
passed as argument (Tenenhaus and Young, 1985);
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• dudi.hillsmith: performs a Hill-Smith analysis of the data frame passed
as argument (Hill and Smith, 1976);

The function dudi.pca is to be used when all the variables present in the
data.frame are numeric. The function dudi.acm is to be used when all the vari-
ables present in the data.frame are factors. The function dudi.hillsmith (or,
equivalently, dudi.mix) is to be used when the data.frame contains both types
of variables. These functions, used as a preliminary to the GNESFA, are needed
to scale the table suitably (so that all the variables have the same mean and the
same variance), and to compute the weights of the variables in the analysis. For
example, the use of dudi.hillsmith on a table containing a numeric variable
and a factor with four levels ensures that the factor will have the same weight in
the analysis as the numeric variable. Chessel et al. (2004) give a full description
of all the possible preliminary dudi.* analysis.

The result of the functions dudi.* is a list with a component $tab containing
the table scaled in a suitable way, and a component $cw containing the weights
of the variables. The function gnesfa only uses these components. However, we
will see later that other functions of the package also make use of the component
$lw for the definition of the row weight of the analysis.

Remark : In many cases, it is extremely useful to interpret the results of these
preliminary analyses (this allows to identify the main patterns on the study
area, even if these patterns are not necessarily related to habitat selection).
The dudi.* analyses are of interest in themselves. However, their use is already
detailed elsewhere (e.g. Chessel et al. 2004), so that we will not describe them
in this vignette.

Back to our example: we will use the function dudi.pca to prepare the
table, because all our variables are numeric (in this particular case, this allows
to center and scale the table, like the function scale):

> pc <- dudi.pca(tab, scannf=FALSE)

3.2.3 The FANTER

We now perform the GNESFA. We first have to choose one of the two distri-
bution of weights (utilisation weights or availability weights) as the reference
distribution and the other as the Focus distribution. Depending on this choice,
the result will not be the same. We will first consider the choice:

• Reference = availability

• Focus = utilization
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The GNESFA, taking the availability distribution as the reference is also
named FANTER (Factor Analysis of the Niche, Taking the Environment as the
Reference). We perform the analysis:

> gn <- gnesfa(pc, Focus = pr)

Select the first number of axes (>=1): 1

Select the second number of axes (>=0): 1

The function asks the user to choose the number of first and last axes to
choose. Indeed, when the Reference distribution is the availability weights and
the Focus is the utilisation weights, both the first axes and the last axes of the
GNESFA may have a meaning. The first axes correspond to the directions where
the utilization distribution as a whole is the furthest from the centroid of the
availability distribution (these directions often correspond to directions where
the marginality is strong; i.e. the criterion γ1 defined previously is maximized).
The last axes correspond to the directions where the width of the utilization
distribution is the smallest relative to the width of the availability distribu-
tion (these directions often correspond to directions where the specialization is
strong, i.e. the criterion γ1 defined previously is minimized). The first barplot
showed by the function correspond to the eigenvalues of the analysis:

Note that it is hard to identify a clear break in the decrease of the eigen-
values. The analysis fails to identify a clear pattern here... The second barplot
corresponds to 1/eigenvalues, and allows to see more clearly the possible pat-
terns on the last axes:
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No clear pattern appears on the last axes (no clear break in the increase
of 1/eigenvalues)... This analysis does not find any interesting direction in the
ecological space. Have a look at the results:

> gn

GNESFA

$call: gnesfa(dudi = pc, Focus = pr, scannf = FALSE, nfFirst = 1, nfLast = 1)

$centering: single

eigenvalues: 1.615 1.451 1.153 1.078 0.9917 ...

$nfFirst: 1 first axes saved

$nfLast: 1 last axes saved

vector length mode content

1 $Reference 4628 numeric Weighting matrix of reference distribution

2 $Focus 4628 numeric Weighting matrix of focus distribution

3 $eig 7 numeric eigen values of specialization

data.frame nrow ncol content

1 $tab 4628 7 modified array

2 $li 4628 2 row coordinates

3 $l1 4628 2 row coordinates (variance weighted by $Reference =1)

4 $co 7 2 column coordinates

5 $cor 7 2 correlation between variables and axes

Just for the sake of illustration, we can have a look at the niche on the
factorial plane built by the first and last axis of the analysis:

> scatterniche(gn$li, pr, pts=TRUE)
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The grey points show the distribution of the RUs (here the pixels) on the
axes found by the analysis. The black points correspond to the RUs used by the
chamois. We can see that the used points are distributed over the whole range
of the factorial axes found by the analysis. This confirms that the analysis fails
to identify any intesting direction.

3.2.4 The MADIFA and Mahalanobis distances

But now, consider the opposite point of view, that is:

• Reference = utilization

• Focus = availability

In this case, the last axes of the analysis do not have any biological meaning
so that we do not consider them (see Calenge and Basille 2008):

> gn2 <- gnesfa(pc, Reference = pr)

Select the first number of axes (>=1): 2

Select the second number of axes (>=0): 0
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In this case, there is a clear break in the decrease of the eigenvalues. The
first axis of the analysis identifies a strong pattern. We can have a look at the
niche of the chamois on the first factorial plane found by the analysis:

> scatterniche(gn2$li, pr)

Whereas the utilization distribution is centred on the origin of the space (as
we defined it as the reference), the availability distribution is strongly skewed
toward the positive values of the first axis. We may have a look at the coefficients
of the environmental variables in the definition of this axis to give a meaning to
it:
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> s.arrow(gn2$co)

The grass cover seems to be the main variable affecting the distribution
of the chamois, and to a lesser extent, the elevation and presence of Fallen
Rocks. However, these variables are correlated on the study area (grass and
fallen rocks occur at high elevation, whereas deciduous cover occurs at low
elevation). This may render the interpretation of the coefficients difficult in an
exploratory context. For this reason, we prefer to give a meaning to the axes
of the GNESFA with the help of the correlations between the environmental
variables and the axes of the GNESFA:

> s.arrow(gn2$cor)
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We now see why interpreting the results with the coefficient may pose prob-
lems: the first axis of the GNESFA is negatively correlated with the grass cover,
the elevation, and positively correlated with the deciduous cover. This did not
appeared with the graph showing the columns coefficients (on which deciduous
even had a negative coefficient!).

Therefore, positive values of the first axis correspond to areas at low elevation
with a high deciduous cover and a low grass cover, and, to a lesser extent, with
a low density of fallen rocks. These areas are rarely used by the chamois, which
prefers area at high elevation, with high grass cover and close to the fallen rocks.

Remark : in this case, the results are not great biological discoveries (we
demonstrate that the chamois lives in the mountains!). Indeed, the dataset
used to illustrate the methods has been slightly destroyed to preserve copyright
(for the original analysis of this dataset, see Calenge et al. 2008). However, this
dataset has an interesting property: choosing the availability or the utilization
as the Reference distribution does not return the same results.

The GNESFA applied with the availability distribution as the focus

is also named MADIFA (Mahalanobis Distances factor analysis, Calenge et
al. 2008). Note that this function can also be applied using the function madifa

(see the help page of this function):

> (mad <- madifa(pc, pr, scan=FALSE))

MADIFA

$call: madifa(dudi = pc, pr = pr, scannf = FALSE)

eigen values: 4.411 1.5 1.221 0.9983 0.8804 ...

$nf: 2 axes saved

vector length mode content

1 $pr 4628 numeric vector of presence

2 $mahasu 4628 numeric squared Mahalanobis distances

3 $lw 4628 numeric row weights

4 $cw 4628 numeric column weights

5 $eig 7 numeric eigen values

data.frame nrow ncol content

1 $tab 4628 7 modified array

2 $li 4628 2 row coordinates

3 $l1 4628 2 row normed scores (variance weighted by $pr = 1)

4 $co 7 2 column coordinates

5 $cor 7 2 cor(habitat var., scores) for available points

Note that the results returned by this function are identical to the results of
the function gnesfa:
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> mad$eig

[1] 4.4105514 1.5003687 1.2214409 0.9983498 0.8804264 0.7608612 0.6191104

> gn2$eig

[1] 4.4105514 1.5003687 1.2214409 0.9983498 0.8804264 0.7608612 0.6191104

However, more methods are provided by adehabitatHS to deal with the
results of the function madifa. For example, a full summary of the analysis can
be obtained with:

> plot(mad, map)

This figure presents:

• the eigenvalue diagram of the analysis;

• the coefficients of the variables in the definition of the axis;

• the plot of the niche on the factorial axes;

• the map of the Mahalanobis distances (see below);

• the map of the approximate Mahalanobis distances computed from the
axes of the analysis;

• the correlation between the environmental variables and the axes of the
analysis;
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• the maps of the scores of the pixels of the map on the axes of the analysis.

Remark : by default, the MADIFA is carried out with equal availability weights
for all RUs when the function madifa is used. However, unequal availability
weights can also be defined with this function. To proceed, the user should
pass the vector of availability weights as row weights to the function dudi.*

performed as a preliminary step (see previous section). In our example, if we
had a vector named av.w containing the availability weights of the RUs, the
preliminary PCA could have been performed with the following code:

> pc <- dudi.pca(tab, row.w = av.w, scannf=FALSE)

(not executed here).

The MADIFA, as its names indicates, is closely related to the Mahalanobis
distances methodology introduced by Clark et al. (1993) in Ecology. They
proposed to use the Mahalanobis distance between a pixel and the distribution
of utilization weights in the ecological space as a measure of habitat suitability
of this pixel for the species. A map of these Mahalanobis distances can be
computed by:

> MD <- mahasuhab(map, locs)

> image(MD)

As we can see, this map is very noisy. The MADIFA provides a way to
remove a part of this noise. Actually, the MADIFA finds the direction in the
ecological space where the average squared Mahalanobis distances between the
available RUs and the distribution of utilization weights is the largest (this is
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the meaning of the criterion γ1 when the utilization weights are chosen as the
reference). It is then possible to compute a reduced-rank Mahalanobis distance
between pixels and this utilization from the results of the analysis. Practically,
this is done by summing the squared scores of the pixels on the successive axes
of the analysis. For example, for a map based on only one axis:

> RMD1 <- data.frame(RMD1=mad$li[,1]^2)

> coordinates(RMD1) <- coordinates(map)

> gridded(RMD1) <- TRUE

> image(RMD1)

This map is much clearer than the previous one. For the sake of the illus-
tration, to compute reduced rank Mahalanobis distances based on two axes:

> RMD2 <- data.frame(RMD2 = apply(mad$li[,1:2], 1, function(x) sum(x^2)))

> coordinates(RMD2) <- coordinates(map)

> gridded(RMD2) <- TRUE

> image(RMD2)
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This second map is more noisy than the first. We would keep the first one
to describe habitat selection.

More details about the MADIFA and the GNESFA can be found on the help
pages of the functions madifa and gnesfa.

3.2.5 The ENFA

The Ecological niche factor analysis has been proposed by Hirzel et al. (2002)
for habitat suitability mapping purposes. Basille et al. (2008) have showed that
this analysis could be used efficiently to explore the ecological niche. The basic
principle of this analysis is the following:

• First compute the marginality vector (connecting the centroid of the dis-
tribution of availability weights to the centroid of the distribution of uti-
lization weights);

• Then project the cloud of RUs on the hyperplane orthogonal to the marginal-
ity vector;

• Find the directions in this subspace on which the specialization (ratio vari-
ance of the distribution of availability weights / variance of the distribution
of utilization weights) is the largest. These axes are named “specialization
axes”
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Basille et al. (2008) have showed that the ENFA can also be viewed as a
particular case of the GNESFA. Actually, once the data have been projected on
the hyperplane orthogonal to the marginality vector, the GNESFA of the data
table is identical to the ENFA, whatever the distribution chosen as a Refer-
ence (in the case where the availability is chosen as the reference, the last axes
maximize the specialization; in the case where the utilization is chosen as the
reference, the first axes maximize the specialization). The ENFA can be carried
out with the function enfa or the function gnesfa:

> en1 <- enfa(pc, pr, scan=FALSE)

> gn3 <- gnesfa(pc, Reference=pr, scan=FALSE, centering="twice")

> en1$s

[1] 1.5488351 1.2557293 0.9996892 0.8818026 0.7738212 0.6191188

> gn3$eig

[1] 1.5488351 1.2557293 0.9996892 0.8818026 0.7738212 0.6191188

The eigenvalues diagram is presented below:

> barplot(en1$s)

The ENFA fails to identify any specialization pattern in the data. However,
remember that the ENFA is an analysis of the table projected on the hyperplane
orthogonal to the marginality vector. There may be an interesting pattern in
the direction of the marginality vector, which is therefore not expressed in the
directions found by the ENFA. For this reason, it is essential to consider the
projection of the data table on the marginality vector as well as the projections
of the data table on the directions of the specialization axes (see Basille et al.
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2008).

Basille et al. (2008) showed that a biplot (Gabriel, 1971) can be used to show
both the variables and the RU scores on the plane formed by the marginality
vector (X direction) and any specialization axis (Y direction). This biplot can
be drawn by:

> scatter(en1)

This biplot is the main result of the ENFA. The dark grey polygon shows the
position of the distribution of used RUs, whereas the light grey polygon displays
the position of the distribution of available RUs. The abscissa is the marginality
axis (the direction where the centroid of the distribution of utilization weights
– displayed by a dot – is the furthest from the centroid of the distribution of
available weights – the origin of the axes), and the ordinate is the first special-
ization axis (the direction where the variance of the utilization distribution is
the smallest relative to the variance of the availability distribution).

The eigenvalue diagram indicated that the ENFA failed to identify a direc-
tion where the specialization is high (it is clear on the previous figure that the
variance of the niche on the y-direction is not much smaller than the variance of
the distribution of available RUs) . However, we can see that the main pattern
in the dataset (identified by the MADIFA) is expressed by the marginality axis.
The results of the ENFA are therefore consistent with the results returned by
the MADIFA. Indeed the marginality axis is strongly correlated with the first
axis of the MADIFA:

> plot(mad$li[,1], en1$li[,1], xlab="First axis of the MADIFA",

+ ylab="Marginality axis")
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Remark : by default, the ENFA is carried out with equal availability weights for
all RUs when the function enfa is used. However, unequal availability weights
can also be defined with this function. To proceed, the user should pass the
vector of availability weights as row weights to the function dudi.* performed
as a preliminary step (see section 3.2.2). In our example, if we had a vector
named av.w containing the availability weights for each RU, the preliminary
PCA could have been performed with the following code:

> pc <- dudi.pca(tab, row.w = av.w, scannf=FALSE)

(not executed here).

3.2.6 Conclusions regarding the GNESFA

In practice, the three analyses taking place within the framework of the GNESFA
often return the same results. However, this is not always the case, as demon-
strated by our example. Taking the utilization weights as the Focus distribution
(the FANTER) does not allow to identify any pattern in the data here. Actually,
even if the FANTER tends to maximize the marginality on the first axes and the
specialization on the last axes, it does not explicitly make a distinction between
the marginality and the specialization (for more formal details, see Calenge and
Basille, 2008).

The MADIFA identifies a strong pattern in the data, and the ENFA indi-
cates that this pattern is essentially a marginality axis. So, we may wonder why
it does not appear on the first axis of the FANTER... Actually, on the first
axis of the MADIFA, both the marginality and the specialization are strong.
That is, on the marginality axis, the ratio (used variance)/(available variance)
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is very low. Therefore, because both parameters (specialization and marginal-
ity) are strong, the FANTER fails to disentangle the information carried by
two measures... and does not identify any pattern. By forcing the extraction
of the marginality axis, the ENFA identifies this direction, and by combining
marginality and specialization into a single measure (the average Mahalanobis
distances), the MADIFA identifies this direction.

We should not conclude from this example that the FANTER is useless.
Each method has particular properties that are not shared by the other methods.
Thus, the FANTER is the only analysis of this framework allowing to identify
bimodal niches (as demonstrated by Calenge and Basille 2008). The MADIFA is
the only analysis combining the marginality and the specialization into a unique
measure of habitat selection. The ENFA is the only analysis distinguishing
formally the marginality and the specialization. The three methods provide
three complementary points of view on the ecological space.

3.2.7 An alternative analysis proposed by James Dunn

During an e-mail discussion related to the MADIFA, James Dunn (formerly
University of Arkansas) proposed an alternative analysis with several interesting
properties. Because this analysis is unpublished, we reproduce the derivation of
the analysis in the appendix (with the authorization of Pr. Dunn). This analysis
finds the direction where the specialization is maximized, without projecting the

data orthogonally to the marginality vector. Thus, the first axis of the analysis
maximizes the ratio:

Variance of the availability distribution

Variance of the utilization distribution

and does not consider the marginality as a separate parameter (actually, it does
not consider the marginality at all!). Thus, if both the marginality and the
specialization are strong in a direction, this direction will be found by this anal-
ysis. We have programed this approach in the function dunnfa of the package
adehabitatHS. Note that this function does not (yet) allow to define unequal
availability weights for the RUs. We can try this approach on the bauges

dataset:

> dun <- dunnfa(pc, pr, scann=FALSE)

Have a look at the eigenvalues:

> barplot(dun$eig)
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There is a clear break in the decrease of the eigenvalues after the first one.
The first axis therefore expresses a clear pattern. We can have a look at the
niche of the species on this first axis:

> histniche(data.frame(dun$liA[,1]), pr, main="First Axis")

The white histogram shows the distribution of the available RUs, whereas
the grey histogram corresponds to the distribution of the used RUs. We can see
that the niche of the species is positively skewed on the first axis: the chamois
searches for high values of the first axis.
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Similarly to the GNESFA, we can interpret the meaning of the axis with
the help of the coefficients of the variables or with the correlations between the
variables and the scores of the available RUs on the first axis. We choose the
latter:

> s.arrow(dun$cor)

We find again the structure highlighted on the first axis of the MADIFA
and the marginality axis of the ENFA. There is indeed a very strong correlation
between the first axis of the MADIFA and the first axis of this analysis:

> plot(dun$liA[,1], mad$li[,1], xlab="DUNNFA 1", ylab="MADIFA 1")
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Note that the DUNNFA also allows to compute reduced ranks Mahalanobis
distances (see appendix). Presently, the DUNNFA has been implemented only
for the data.frames containing only numeric variables (the preliminary dudi.*

analysis should be dudi.pca).

3.3 One word about habitat suitability maps

In the previous sections, we already have seen two methods designed to map
habitat suitability for a species: the Mahalanobis distances (Clark et al. 1993,
implemented in mahasuhab) and the reduced ranks Mahalanobis distances (com-
puted with the help of the MADIFA or the DUNNFA).

We now stress that the package adehabitatHS is not designed for

predictive purpose, but rather for exploratory purposes. There are
many packages available for habitat prediction in R (see the CRAN Task view:
http://cran.rproject.org/web/views/Environmetrics.html). The meth-
ods in adehabitatHS allowing habitat suitability mapping are there as a recog-
nition that visual exploration of such maps may bring insight into the processes
at work on the area. Except for the methods related to the Mahalanobis dis-
tances, the package adehabitatHS provides only the DOMAIN algorithm for
such mapping (Carpenter et al. 1993, implemented in the function domain).

3.4 When habitat is defined by several categories

A very common approach to the study of habitat selection consists in defining
several habitat categories on the study area and comparing the use and avail-
ability of each habitat category by the species. For example, let us consider the
elevation map on the study area. Define four classes of elevation (using the R
function cut):

> elev <- map[,1]

> av <- factor(cut(slot(elev, "data")[,1], 4),

+ labels=c("Low","Medium","High","Very High"))

The number of pixels in each class is:

> (tav <- table(av))

av

Low Medium High Very High

1775 1657 995 201

Let us map this variable:

> slot(elev, "data")[,1] <- as.numeric(av)

> image(elev)
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Now, compute the percentage of use of each habitat class by the chamois.
That is, we compute the number of chamois detections in each habitat class:

> us <- join(locs, elev)

> tus <- table(us)

> names(tus) <- names(tav)

> tus

Low Medium High Very High

11 89 84 14

To study the habitat selection of the chamois, we have to compare the use
and availability of each habitat class. Manly et al. (2002) provide a methodology
for this kind of design, relying on the calculation of selection ratios:

wj =
uj

aj

where uj is the proportion of use of the habitat class j and aj is the proportion
of availability of this habitat class j. Manly et al. (2002) present the use of
these selection ratios in an inferential context, but such ratios are also useful in
exploratory contexts. Note that these ratios may be scaled so that their sum is
equal to 1, that is:

Bj =
wj
∑

i wi

The function widesI implements the approach of Manly et al. (2002; more
details are presented in the example section of the help page of this function):
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> class(tus) <- NULL

> tav <- tav/sum(tav)

> class(tav) <- NULL

> (Wi <- widesI(tus, tav))

************** Manly's Selection ratios for design I ********

Significance of habitat selection:

Khi2L df pvalue

125.821 3.000 0.000

Table of ratios (p-values should be

compared with Bonferroni level= 0.0125 )

used avail Wi SE.Wi P Bi

Low 0.056 0.384 0.145 0.042 0.000 0.029

Medium 0.449 0.358 1.255 0.099 0.010 0.251

High 0.424 0.215 1.973 0.163 0.000 0.395

Very High 0.071 0.043 1.628 0.419 0.134 0.326

Bonferroni classement

Based on 95 % confidence intervals on the differences of Wi :

habitat High Very High Medium Low

High -----------------

Very High -------------------------

Medium -------------------

Low -----

The “table of ratios” presents the selection ratios, together with the propor-
tion of use and availability (and other measures fully described in Manly et al.
2002). This table illustrates that higher elevations are selected by the chamois.
Note that a graphical summary of the results can be obtained by typing:

> plot(Wi)

(not executed in this report). Selection ratios are a useful approach to the study
of habitat selection, especially in the context of designs II and III.

Remark : There are close connections between the theory of selection ratios and
the GNESFA presented in the previous sections. Indeed, let us consider the
table X containing binary data, indicating whether each pixel (in row) contains
(1) or not (0) each habitat type (in column). Let u be the vector containing
the number of chamois detections in each pixel. It can be shown that when
the distribution of utilization weights u is chosen as the Focus distribution, the
analysis finds the direction where the selection ratios are the largest. Indeed, the
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sum of the eigenvalues of the GNESFA (with utilization weights corresponding
to the utilization distribution) corresponds to the sum of the selection ratios
minus one. We chan check it on our example:

> dis <- acm.disjonctif(slot(elev, "data"))

> pc2 <- dudi.pca(dis, scan=FALSE)

> gnf <- gnesfa(pc2, pr, scan=FALSE)

We first used the function acm.disjonctif from the package ade4 to convert
the factor variable into a complete disjonctive table. Then, after a preliminary
PCA on this table (see section 3.2.2), we performed the GNESFA on this table,
using the vector pr created in previous sections. Now check that the sum of the
eigenvalues of the GNESFA corresponds to the sum of the selection ratios plus
one:

> sum(gnf$eig)

[1] 4.001572

> sum(Wi$wi)

[1] 5.001572

Thus, in the particular case where there is only one factor variable describ-
ing the habitat, the selection ratios and the GNESFA are closely connected.
Although the former are easier to understand in this case, when the number of
habitat variables increase, the GNESFA provides a consistent way to explore
habitat selection in design I studies.

4 Design II studies

4.1 Basic data structure

As explained in section 2.2, design II studies correspond to studies for which
animals are identified (e.g. using radio-tracking) and habitat use is measured
for each one, but availability is considered to be the same for all animals of the
population. Again, the model of the ecological niche can be very useful in this
context:
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Each RU is characterized by a value for all the environmental variables, so
that to each RU is associated a point in the ecological space (grey points on the
figure). For each animal, the set of used RUs defines a “niche” in the ecologi-
cal space (as defined in section 2.3). So that there are as many niches in the
ecological space as there are animals. Note that a given RU may possibly be
used by several animals. Although both the availability weights and utilization
weights may vary from one RU to the other, this model is useful to understand
the methods that can be used to study habitat selection with such designs.

Our aim is to identify the directions in the ecological space on which (i) the
niches are the most different from the distribution of available points, (ii) these
differences between the distribution of available points and the niches are the
most similar.

The functions of adehabitatHS make an extensive use of the marginality
vectors in this context. These vectors connect the mean of the distribution of
available points (here, at the origin of the ecological space) to the mean of the
niches. These vectors are a rough summary of the selection (they measure the
distance between what is available in average and what is used in average by an
animal). These vectors are represented by arrows on the figure.

In this section, we will use as an example a dataset collected by Daniel
Maillard (Office national de la chasse et de la faune sauvage) on the wild boar.
First load the data:

> data(puech)

> names(puech)

[1] "relocations" "maps"
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This data set has two components: the component maps describes the values
of 9 environmental variables on the study area:

> maps <- puech$maps

> mimage(maps)

and the component relocations contains the relocations of 6 wild boar on the
study area:

> locs <- puech$relocations

> image(maps)

> points(locs, col=as.numeric(slot(locs, "data")[,1]), pch=16)
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We now count the number of relocations in each pixel of the map, for each
animal (see the help page of the function count.points):

> cp <- count.points(locs, maps)

> mimage(cp)

We can now derive the elements required for the analysis of habitat selection:

> X <- slot(maps, "data")

> U <- slot(cp, "data")

where X and U correspond respectively to the table containing the values of
the environmental variables and to the utilization weights of each RU and for
each animal (see section 2.2).

4.2 The OMI analysis

The Outlying Mean Index (OMI) analysis is one possible approach to the study
of habitat selection (Doledec et al. 2000). First the table X is centred for
the availability weights, so that the origin of the space corresponds to what is
available in average to the animals. Then, one performs a noncentred principal
component analysis of the coordinates of the marginality vectors in this space.
This allows to find the directions where the marginality is in average the largest.
More formally, this analysis finds the vector b = (b1, b2, ..., bp) such that:

• y = b1x1 + ...+ bpxp

•

∑K

i=1
ȳ2ui =

∑K

i=1
(ȳui − ȳai)

2 is maximum on the first axis (where ȳui is
the mean of the utilization distribution of the ith animal and ȳai is the
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mean of the availability distribution for this animal)

The OMI analysis is implemented in the function niche of the package ade4.
Let us try it on our example. As for the GNESFA, it is required that a dudi.*

analysis is performed as a preliminary step (see section 3.2.2). Because all our
variables are numeric, we first perform a principal component analysis:

> pc <- dudi.pca(X, scannf=FALSE)

Then, we use the function niche:

> (ni <- niche(pc, U, scannf=FALSE))

Niche analysis

call: niche(dudiX = pc, Y = U, scannf = FALSE)

class: niche dudi

$rank (rank) : 6

$nf (axis saved) : 2

$RV (RV coeff) :

eigen values: 10.89 0.9072 0.151 0.04964 0.01842 ...

vector length mode content

1 $eig 6 numeric eigen values

2 $lw 6 numeric row weigths (crossed array)

3 $cw 9 numeric col weigths (crossed array)

data.frame nrow ncol content

1 $tab 6 9 crossed array (averaging species/sites)

2 $li 6 2 species coordinates

3 $l1 6 2 species normed scores

4 $co 9 2 variables coordinates

5 $c1 9 2 variables normed scores

6 $ls 1962 2 sites coordinates

7 $as 2 2 axis upon niche axis

A summary of the analysis is obtained by typing:

> plot(ni)
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This figure contains a full summary of the analysis:

The eigenvalues diagram shows the amount of marginality accounted for by
each axis. It is very clear that one axis accounts for most marginality present
in the dataset. Actually, the first axis accounts for:

> ni$eig[1]/sum(ni$eig)

[1] 0.9052399

more than 90% of the marginality in the dataset!! However, the second axis
also expresses a notable amount of the marginality: there is a clear break in the
decrease of the eigenvalues after the second one. The second axis accounts for:

> ni$eig[2]/sum(ni$eig)

[1] 0.07538909

7.5% of the marginality. Together, the two axes account for 98% of the marginal-
ity in the dataset.

The main graph (Samples and species) shows the projection of the RUs
(named “samples” on the graph) on the first factorial plane, as well as the posi-
tion of the mean of the distribution of utilization weights for each animal (named
“species” on the graph – this analysis was originally developed for the analysis
of multiple species distribution). Four animals out of 6 are characterized by a
strong selection of the positive values of the first axis. Note that two animals
are characterized by strong negative values of the second axis.
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To give a meaning to these axes, have a look at the graph labelled “Vari-

ables”, which presents the scores of the variables on the axes of the analysis (i.e.,
the values of the coefficients bi found by the analysis). The positive values of the
first axis (strongly selected by four animals) correspond to areas characterized
by steep slopes (difficult access for human), far from trails and crops (idem)
and low sunshine (this area is Mediterranean, and therefore very warm [often >
40˚ C] and the animals are relocated during the day in summer). The strong
selection for the positive values of the first axis are therefore easily interpretable
biologically. The negative values of the second axis (strongly selected by two
animals) correspond to areas with high grass cover (it is easier for the animals
to hide there).

The graph labelled “Axis” is often of interest. It represents the correlation
between the first two axes of the PCA of the available RUs (i.e. the prelimi-
nary dudi.* analysis) and the axes of the OMI analysis. The first axis of the
preliminary PCA identifies the direction where the variance of the availabil-
ity distribution is the largest. Thus, the first two axes of the PCA identifies
the main directions structuring the study area. The strong correlation between
the scores of the available RUs on the first axis of the PCA and the scores of
the available RUs on first axis of the OMI analysis indicates that the direction
where the habitat selection appears the strongest is also the direction where the
environment is the most variable. In some studies, this observation may be of
biological interest (and we will see in the next chapter that this may also be
problematic in some studies).

The other graphs are not of interest for us.

Another useful display consists in mapping, in the geographical space, the
scores of the RUs on the axes. This is done simply by:

> ls <- ni$ls

> coordinates(ls) <- coordinates(maps)

> gridded(ls) <- TRUE

> mimage(ls)
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This kind of maps is also very useful to give a biological meaning to the
axes found by the analysis. In this case, it is very clear that the four animals
selecting the positive values of the first axis are located at the extreme north of
the study area (this area correspond to the gorges of the Herault river).

4.3 The canonical OMI analysis

We noted that the strong correlation between the first axis of the PCA and
the first axis of the OMI analysis may sometimes indicate a problem. We now
explain why. Dray et al. (2003) noted that the OMI analysis is a co-inertia
analysis. A full description of the co-inertia analysis can be found in Dray et al.
(2003) and Doledec and Chessel (1994). We give here a rapid description of this
method. The co-inertia analysis is a “two-table” factor analysis, like the redun-
dancy analysis or the canonical correlation analysis. Its basic aim is similar to
the aim of canonical correlation analysis: to find similarities between two tables
A and B with the same number of rows. Mathematically, it corresponds to the
principal component analysis of the table T = AtB, using uniform row weights
and column weights for T. It can be shown that when both A and B are centred
and scaled, so that their columns all have a mean equal to zero and a standard
deviation of 1, then this analysis finds a direction u in the space defined by the
columns of A and a direction v in the space defined by the columns of B so
that the covariance between Au and Bv is maximized. The main quality of the
co-inertia analysis is that there is no mathematical constraint on the number of
rows of the tables A and B (The number of rows of these tables may even be
smaller than the number of columns).

An important point here is that:

cov(Au,Bv) = cor(Au,Bv)
√

var(Au)
√

var(Bv)
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Therefore, if the variance of, say, the table A is very large in a given direc-
tion, there is a risk that the analysis returns this direction, even if the correlation
between this direction and any direction in the space defined by the columns of
B is small. This may or may not be a problem, depending on the context in
which the co-inertia analysis is used. However, for the study of habitat selection,
it is problematic.

In the case of OMI analysis, the table A is centred (it corresponds to the
table X defined in section 2.2), but the table B is not (it corresponds to the
table U in section 2.2), so that it is not the covariance that is maximized by the
analysis, but more generally a co-inertia (a covariance is a particular type of
co-inertia). In particular, as we have already seen, the OMI analysis maximizes
the average marginality of the animals. However, the arguments given above
still hold. When there is a strong environmental pattern on the study area, there

is a non-negligible risk that the first axes of the OMI analysis identifies this pat-

tern, more than habitat selection.

This can be illustrated on the following figure, illustrating the habitat selec-
tion of four animals on two variables:

The grey points correspond to the available RUs and the colored points corre-
spond to the used RUs of 4 animals. The marginality vectors are also indicated.
It is clear on this figure that the direction that maximizes the marginality is
the abscissa (because this is the direction that is in average the “closest” to the
marginality vectors). However, in this direction, we find animals using both very
positive and very negative values of this axis, so that there is no strong selection
of the animals on this direction. On the other hand, it is also clear that the
direction on which habitat selection occurs is the ordinate (all the marginality
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vectors are characterized by a positive coordinate, no use of the negative values
in this direction). Therefore, maximizing the marginality explained by the first
axis does not necessarily returns the direction where the habitat selection is the
largest. If there is a direction of the ecological space where the variance of the
available RUs is much larger than in any other direction, there is a risk that
the OMI analysis return this direction, whatever the habitat selection by the
species. This may be a problem with OMI analysis.

I already have met this problem, when I was working on the habitat selection
of the mouflon in the Bauges mountains (Darmon et al., 2012). In this moun-
tainous area, the elevation strongly structures all the environmental variables.
The first axis of the OMI analysis was mainly determined by the elevation pat-
tern, and no common direction for the marginality vectors was identified.

This is where the canonical OMI analysis may be useful. This analysis first
distort the ecological space so that the distribution of availability weights takes
a standard spherical shape:

It is clear then that the direction where the marginality is the largest in
this distorted space is the direction where habitat selection will be the clearest.
However, there is a counterpart: the canonical OMI analysis places mathemat-
ical constraint on (i) the number of RUs (it should be larger than the number
of environmental variables to allow the matrix inversion required by the anal-
ysis) and (ii) the environmental variables should be linearly independent (also
to allow this inversion).

Additional mathematical details can be found in Darmon et al. (2012). The
canonical OMI analysis is implemented in the function canomi. We can carry
out the analysis:
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> com <- canomi(pc, U, scannf=FALSE)

A full summary of the results is displayed below:

> plot(com)

The Eigenvalues indicates that the first two axes account for most of the
marginality of the dataset, once the ecological space has been distorted to sphere
the distribution of availability weights (clear break after the second eigenvalue).
The main graph (RUs and animals) indicates that four animals select strongly
for negative values of the first axis, and two animals for negative values of the
second axis. This is confirmed by the Marginality vectors. Both the vari-

able scores and the correlations indicate that negative values of the first axis
correspond to areas with steep slopes, far from the crops and from recreational
trails, with low elevation and sunshine (but the two graphs may sometimes in-
dicate different results (see section 4.3 for further discussion on this aspect).

There is actually a strong correlation between the results of the classical
OMI analysis and the results of the canonical OMI analysis:

> par(mfrow=c(2,1))

> plot(ni$ls[,1], com$ls[,1],

+ xlab="Scores on the first axis of the OMI",

+ ylab="Scores on the first axis of the can. OMI")

> plot(ni$ls[,2], com$ls[,2],

+ xlab="Scores on the first axis of the OMI",

+ ylab="Scores on the first axis of the can. OMI")
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The classical and canonical OMI analyses here return the same patterns, but
this may not always be the case.

Remark : note that variable availability weights can be defined for both the
OMI and canonical OMI analysis, by passing them as the row.w argument to
the preliminary dudi.* analysis.

4.4 When habitat is defined by several categories

Similarly to design I studies, it is a very common approach to study habitat
selection by several animals by defining several habitat categories on the study
area. For example, let us consider the slope map on the study area. Define four
classes of slope (using the R function cut):

> slope <- maps[,8]

> sl <- slot(slope, "data")[,1]

> av <- factor(cut(sl, c(-0.1, 2, 5, 12, 50)),

+ labels=c("Low","Medium","High","Very High"))

>

The number of pixels in each class is:

> (tav <- table(av))

av

Low Medium High Very High

545 467 477 473

Let us map this variable:
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> slot(slope, "data")[,1] <- as.numeric(av)

> image(slope)

Now, compute the percentage of use of each habitat class by each animal.
That is, we compute the number of relocations for each animal in each habitat
class:

> us <- join(locs, slope)

> tus <- table(slot(locs,"data")[,1],us)

> class(tus) <- NULL

> tus <- as.data.frame(tus)

> colnames(tus) <- names(tav)

> tus

Low Medium High Very High

Brock 0 0 1 29

Chou 28 2 0 0

Jean 22 3 2 3

Kinou 6 0 2 21

Schnock 0 0 1 25

Suzanne 1 0 8 21

There are several ways to compare use and availability in design II stud-
ies when several habitat types have been defined. A common approach is the
compositional analysis proposed by Aebischer et al. (1993). This approach is
implemented in the function compana:

> tav2 <- matrix(rep(tav, nrow(tus)), nrow=nrow(tus), byrow=TRUE)

> colnames(tav2) <- names(tav)

> compana(tus, tav2, test = "randomisation",

+ rnv = 0.01, nrep = 500, alpha = 0.1)
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************ Compositional analysis of habitat use ***************

The analysis was carried out with 6 animals and 4 habitat types

1. Test of the habitat selection:

randomisation test

Lambda P

0.1256895 0.0780000

2. Ranking of habitats (profile):

habitat Very High High Low Medium

Very High ----------- -----

High -------------------

Low ------------------------------

Medium -------------------

Here, the compositional analysis does not identify any significant habitat
selection. However, this approach relies on the hypothesis that all the animals
are selecting habitat in the same way. And we have seen in the previous sections
that this is not necessarily the case...

Another approach has been proposed by Manly et al. (2002), relying on
selection ratios (see section 3.4). For each animal, a selection ratio can be
calculated for each habitat type. Then, after having tested whether habitat
selection is the same for all animals, it is possible to average selection ratios
over all animals:

> tav <- as.vector(tav)

> names(tav) <- names(tus)

> (WiII <- widesII(tus, tav))

************** Manly's Selection ratios for design II ********

1. Test of identical use of habitat by all animals

(Classical Khi-2 performed on the used matrix):

Khi2L1 df pvalue

176.8034 15.0000 0.0000

2. Test of overall habitat selection:

Khi2L2 df pvalue

311.5155 18.0000 0.0000

3. Test of hypothesis that animals are on average using resources

in proportion to availability, irrespective of whether they are

the same or not (Khi2L2 - Khi2L1):

Khi2L2MinusL1 df pvalue

134.7121 3.0000 0.0000
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Table of selection ratios:

Available Used Wi SE IClower ICupper

Low 0.2777778 0.32571429 1.1725714 0.61211413 -0.3563 2.7015

Medium 0.2380224 0.02857143 0.1200367 0.07714862 -0.0727 0.3127

High 0.2431193 0.08000000 0.3290566 0.16387318 -0.0803 0.7384

Very High 0.2410805 0.56571429 2.3465781 0.72104883 0.5456 4.1475

Bonferroni classement

Based on 95 % confidence intervals on the differences of Wi :

habitat Very High Low High Medium

Very High ----------------

Low ------------------------------

High -------------------

Medium -------------------

In this case, we can see that habitat selection is not the same from one
animal to the other. Therefore, it does not make sense to compute the aver-
age selection ratios. Rather, we should investigate what causes these differences.

Again, a factorial analysis will be of help here. The eigenanalysis of selection

ratios (Calenge and Dufour, 2006) has been developed to explore graphically
habitat selection by the wildlife when habitat is defined by several categories.
This analysis is closely related to the theoretical context underlying the selection
ratios. Indeed, let W be the table containing the selection ratios for each animal
(in row) and each habitat type (in column). The eigenanalysis consists in a
noncentred and nonscaled principal component analysis of the table W − 1,
using the availability weight of each habitat type as column weight and the
number of relocations of each animal as row weight (see Calenge and Dufour,
2006, for more mathematical details). This analysis partition the statistics:

S =

P
∑

i=1

K
∑

j=1

(uij − piu+j)
2

piu+j

where uij is the number of relocations of animal j in habitat i, pi is the pro-
portion of available resource units in habitat i and u+j is the total number
of relocations of animal j. This statistic was proposed by White and Gar-
rott (1990) to test habitat selection in design II studies. What is interesting
is that this analysis connects two widely used approach for habitat selection
studies into a unified framework (selection ratios and White and Garrott (1990)
statistic). The direction of the ecological space that maximizes the statistic S
– and therefore habitat selection – is found by an analysis of the selection ratios.

We now perform the eigenanalysis of selection ratios on our example dataset,
with the function eisera:
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> (eis <- eisera(tus,tav2, scannf=FALSE))

Factorial analysis of selection ratios

$call: eisera(used = tus, available = tav2, scannf = FALSE)

$nf: 2 axis-components saved

$rank: 3

eigen values: 253.2 79.04 2.861

vector length mode content

1 $cw 4 numeric column weights

2 $lw 6 numeric row weights

3 $eig 3 numeric eigen values

data.frame nrow ncol content

1 $tab 6 4 modified array

2 $li 6 2 row coordinates

3 $co 4 2 column coordinates

4 $available 6 4 available proportions

5 $used 6 4 number of relocations

6 $wij 6 4 selection ratios

We focus our interpretation on two axes after considering the eigenvalues
diagram:

> barplot(eis$eig)

The results of the analysis are presented below:

> scatter(eis)
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Here, we find similar results as in previous sections (a group of four animals
is selecting for steep slopes and a group of three animals is selecting for low
slopes).

4.5 Concluding remarks regarding design II analyses

We have seen that the eigenanalysis of selection ratios connects two widely used
approaches for habitat selection studies into a unified framework (selection ratios
and White and Garrott statistic). Actually, it can be shown that this analysis
is a particular case of canonical OMI analysis. Let us perform a canonical OMI
analysis on our example dataset, to illustrate this point. First transform the
map of slopes into a complete disjonctive table:

> avdis <- acm.disjonctif(data.frame(av))

> head(avdis)

av.Low av.Medium av.High av.Very High

1 1 0 0 0

2 1 0 0 0

3 1 0 0 0

4 1 0 0 0

5 1 0 0 0

6 1 0 0 0

Then, perform a canonical OMI analysis using this dataset:

> pc <- dudi.pca(avdis, scannf=FALSE)

> com2 <- canomi(pc, U, scannf=FALSE)
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Now compare the eigenvalues of the canonical OMI analysis with the eigen-
values of the eigenanalysis of selection ratios:

> eis$eig/com2$eig

[1] 175 175 175

The eigenvalues of the eigenanalysis of selection ratios are equal to the eigen-
values of the canonical OMI analysis multiplied by a constant (this constant is
equal to u++−P−1, where u++ is the total number of relocations for all animals
and P is the number of habitat types). The absolute value of the coordinates
of the marginality vectors are also identical:

> eis$li[,1]/com2$li[,1]

[1] 1 1 1 1 1 1

5 Design III studies

5.1 Basic data structure

As explained in section 2.2, design III studies correspond to studies for which
animals are identified (e.g. using radio-tracking) and both habitat use and
availability is measured for each one. The key aspect is that the availability
varies from one animal to the other. Again, the model of the ecological niche
can be very useful in this context:

A particular set of RUs is available to each animal, and a subset of it is used
by the animal. Therefore, each animal is characterized by a niche defined in an
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“available space” particular to it. As in design II studies, we will work with the
marginality vectors (that relate what is available to the animal in average to
what has been used in average by the animal).

We will use as an example the dataset analyzed in the previous section (see
section 4.1 for a description of this data set). Let us estimate the home range
of the animals, e.g. using a minimum convex polygon:

> pcc <- mcp(locs)

> image(maps)

> plot(pcc, col=rainbow(6), add=TRUE)

We rasterize these polygons

> hr <- do.call("data.frame", lapply(1:nrow(pcc), function(i) {

+ over(maps,geometry(pcc[i,]))

+ }))

> names(hr) <- slot(pcc, "data")[,1]

> coordinates(hr) <- coordinates(maps)

> gridded(hr) <- TRUE

> mimage(hr)
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We will study habitat selection inside the home-range (third order habitat
selection according to the scale of Johnson, 1980). The black pixels define what
is available to each animal, and pixels containing at least one relocation define
the use by the animal (stored in the object cp built in section 4.1). The key
problem is that the available pixels are not the same from one animal to the
other.

5.2 The K-select analysis

The K-select analysis is one possible approach to this kind of study (Calenge
et al. 2005). This analysis can be seen as an extension of the OMI analysis
presented in section 4.2. This analysis focuses on the marginality vectors of the
animals. These marginality vectors are recentred so that they have a common
origin. Then, a noncentred principal analysis is performed on the table con-
taining the coordinates of these recentred marginality vectors. This analysis is
therefore similar to the OMI analysis: it finds the direction in the ecological
space where the marginality is the strongest (it is identical to the OMI analysis
when the available RUs are the same for all animals). More formal details can
be found in Calenge et al. (2005).

Let us perform a K-select analysis on our dataset. First prepare the data
for the analysis:

> pks <- prepksel(maps, hr, cp)

> names(pks)

[1] "tab" "weight" "factor"

The component tab correspond to the concatenated tables Xi containing the
values of the environmental variables (columns) in each pixel (rows) available to
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the animal i. The vector weight contains the corresponding utilization weights,
and the vector factor is a factor allowing to define the limits of the Xi in the
component tab. We suppose here that the availability weights are the same for
all pixels.

We perform a preliminary PCA of the data (the section 3.2.2 explains why
this preliminary PCA is required):

> pc <- dudi.pca(pks$tab, scannf=FALSE)

And we perform the K-select analysis:

> ksel <- kselect(pc, pks$factor, pks$weight, scann=FALSE)

> plot(ksel)

This graph summarizes the results of the analysis. The Eigenvalues dia-
gram indicate that the first axis explains most of the marginality present in the
dataset (there is a clear break in the decrease of the eigenvalues after the first
one). The graph labelled Animals shows the recentred marginality vectors (i.e.
marginality vectors shifted so that they have a common origin). This graph
indicates that all animals are characterized by a positive score on the first axis
of the analysis.

The graph labelled Variables gives the scores of the variables. This graph
allows to give a biological meaning to the axes. Here, positive values of the axis
correspond to the RUs located at low elevation, close to water, with low sun-
shine, far from trails and crops, with high slopes. This axis therefore opposes
the areas located in the gorges of the Herault river and the areas located on the
plateau.
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The graph labelled Available resource units shows the distribution of
available RUs on the first two axes of the analysis. It is clear on this graph that
Jean and Chou are characterized by available RUs all located on the plateau
(with a restricted range of values on the first axis), Schnock and Brock are char-
acterized by available RUs all located in the gorges of the Herault river (also
with a restricted range of values on the first axis), and Suzanne and Kinou have
the two types of habitat within their home range (large range of values on the
first axis).

The main graph, labelled Marginality vectors shows the original (i.e. non-
recentred) marginality vectors. The origin of the arrow indicates what is avail-
able in average to the animal, the end of the arrow indicates what has been used
in average by the animal, and the direction and length of the arrows indicate
respectively the direction and strength of habitat selection. This graph shows
that the strongest selection is showed by the two animals having the largest
choice of values of the first axis of the analysis. A possible interpretation would
be that the gorges of the Herault river is a preferred habitat that is selected
when available.

5.3 When habitat are defined by several categories

As for other designs, studying habitat selection when habitat is defined by sev-
eral categories is a common approach. We will not illustrate the methods avail-
able to deal with such designs here, as the methods available to deal with design
III are just extensions of the methods available for design II. We therefore refer
the reader to the help pages of the following functions:

• compana: the compositional analysis is also a possible approach for the
analysis of habitat selection in design III studies (Aebischer et al. 1993);

• widesIII: Manly et al. (2002) also extended the theoretical framework
underlying the selection ratios to the analysis of habitat selection;

• eisera: the eigenanalysis of selection ratios is also a possible approach to
the analysis of habitat selection in design III studies (Calenge and Dufour,
2006).

6 Conclusion

I included in the package adehabitatHS several functions allowing the explo-
ration of habitat selection by the wildlife. The functions from the other brother
packages can be used to explore habitat selection using a wide variety of ap-
proaches.
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7 Appendix: the derivation of a new factor anal-

ysis by James Dunn

Let y be a P -dimensional vector of random variables, with successive realizations
being the data vectors corresponding to the z vectors of the manuscript. Let
a denote any P -dimensional vector of length one whose extensions define an
axis in P -space. The projection of y on the axis defined by a is x = aty and
immediately:

Var(xu) = atΣua

if y is any “used” pixel, and

Var(xa) = atΣaa

if y is any “available” pixel. Note that Σu and Σa are correlation matrices if the
elements of y are properly scaled.

The problem: Find a of length one such that:

φ = var(xa)/var(xu) = atΣaa/a
tΣua

is maximized.

We arrive at the stationary values of φ by differentiating with respect to a

and equating the result to a vector of zeros:

∂φ

∂a
=

2Σaa

atΣua
−

(2atΣaa)Σua

(atΣua)2

Equating this to 0 and performing the obvious cancellations yields:

Σaa−

(

atΣaa

atΣua

)

Σua = 0

or

(Σa − φΣu)a = 0

by recognizing the form of the criterion function, or

(Σ−1
u Σa − φI)a = 0

The latter equation identifies the required solution, a, as an eigenvector
(scaled to length one) corresponding to the largest eigenvalue of Σ−1

u Σa. Clearly
smaller stationary values of φ correspond to the smaller eigenvalues of the same
matrix and occur at coordinates given by their respective associated eigenvec-
tors.
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The apparent computational difficulty associated with finding eigenvalues
and eigenvectors of non-symmetric Σ−1

u Σa is alleviated by the factorization
Σa = TtT, where T is upper triangular. In terms of the characteristic root
(eigenvalue) operator, ch(.), then

φ1 = Max ch(Σ−1
u Σa) = max ch(Σ−1

u TtT) = max ch(TΣ−1
u Tt)

where TΣ−1
u Tt is symmetric. Its associated eigenvector a1 must satisfy:

(Σ−1
u Σa − φ1I)a1 = (Σ−1

u TtT− φ1I)a1 = 0 (1)

(Σ−1
u Tt − φ1T

−1)Ta1 = 0 (2)

(TΣ−1
u Tt − φ1I)Ta1 = (TΣ−1

u Tt − φ1I)b1 = 0 (3)

where b1 = Ta1 is the eigenvector of the symmetric matrix TΣ−1
u Tt asso-

ciated with its largest eigenvalue φ1. Clearly then a1 = T−1b1 is the required
solution to the problem as posed. Additional eigenvalue-eigenvector pairs are
similarly found. If the A = (a1, ...,aP ) and B = (b1, ...,bP ) represent column-
wise concatenations of the respective eigenvectors, then B = TA, or A = T−1B

whose first column defines the axis required to solve the original problem. Addi-
tional orthogonal axes are defined by the remaining columns of A (as in principal
components analysis).

The foregoing development relates to Mahalanobis D2 as follows:

We shall want D2 to reflect dissimilarity between any pixel, y, and the mean
of the “used” pixels, µu, using Σu as the metric. Our reasoning is that any “avail-
able” site has the potential of being a “used” site until proved otherwise by the
magnitude of D2.

D2 = (y − µu)
tΣ−1

u (y − µu) (4)

= (y − µu)
tT−1TΣ−1

u TtT−t(y − µu) (where T−t = (Tt)−1) (5)

= (y − µu)
tT−1BDφB

tT−t(y − µu) (where Dφ = diag(φ1, ..., φP )(6)

= (y − µu)
tADφA

t(y − µu) (7)

=

P
∑

j=1

φj((y − µu)
taj)

2 (8)

=

P
∑

j=1

(

(y − µu)
taj

1/
√

φj

)2

(9)

Clearly any R-dimensional subset of these components also could be used to
reflect the species-suitability of a pixel, e.g,
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D2
R =

R
∑

j=1

(

(y − µu)
taj

1/
√

φj

)2

assuming that the eigenvalues are ordered φj > φj+1. Thus, D2 is seen to par-
tition into a weighted sum of squares of projections of y−µu on each successive
derived axes.
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