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KSgeneral-package Computing P-Values of the One-Sample K-S Test and the Two-Sample
K-S and Kuiper Tests for (Dis)Continuous Null Distribution

Description

This package computes p-values of the one-sample and two-sample Kolmogorov-Smirnov (KS)
tests and the two-sample Kuiper test.

The one-sample two-sided Kolmogorov-Smirnov (KS) statistic is one of the most popular goodness-
of-fit test statistics that is used to measure how well the distribution of a random sample agrees
with a prespecified theoretical distribution. Given a random sample {X1, ..., Xn} of size n with an
empirical cdf Fn(x), the two-sided KS statistic is defined as Dn = sup |Fn(x)−F (x)|, where F (x)
is the cdf of the prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn}
comes from F (x). The package KSgeneral implements a novel, accurate and efficient Fast Fourier
Transform (FFT)-based method, referred as Exact-KS-FFT method to compute the complementary
cdf, P (Dn ≥ q), at a fixed q ∈ [0, 1] for a given (hypothezied) purely discrete, mixed or continuous
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underlying cdf F (x), and arbitrary, possibly very large sample size n. A plot of the complementary
cdf P (Dn ≥ q), 0 ≤ q ≤ 1, can also be produced.

In other words, the package computes the p-value, P (Dn ≥ q) for any fixed critical level q ∈
[0, 1]. If an observed (data) sample, {x1, ..., xn} is supplied, KSgeneral computes the p-value
P (Dn ≥ dn), where dn is the value of the KS test statistic computed based on {x1, ..., xn}. One
can also compute the (complementary) cdf for the one-sided KS statistics D−

n or D+
n (cf., Dimitrova,

Kaishev, Tan (2020)) by appropriately specifying correspondingly Ai = 0 for all i or Bi = 1 for all
i, in the function ks_c_cdf_Rcpp.

The two-sample Kolmogorov-Smirnov (KS) and the Kuiper statistics are widely used to test the
null hypothesis (H0) that two data samples come from the same underlying distribution. Given a
pair of random samples Xm = (X1, ..., Xm) and Yn = (Y1, ..., Yn) of sizes m and n with empirical
cdfs Fm(t) and Gn(t) respectively, coming from unknown CDFs F (x) and G(x). It is assumed
that F (x) and G(x) could be either continuous, discrete or mixed, which means that repeated ob-
servations are allowed in the corresponding observed samples. We want to test the null hypoth-
esis H0 : F (x) = G(x) for all x, either against the alternative hypothesis H1 : F (x) ̸= G(x)
for at least one x, which corresponds to the two-sided test, or against H1 : F (x) > G(x) and
H1 : F (x) < G(x) for at least one x, which corresponds to the two one-sided tests. The (weighted)
two-sample Kolmogorov-Smirnov goodness-of-fit statistics that are used to test these hypotheses
are generally defined as:

∆m,n = sup |Fm(t)−Gn(t)|W (Em+n(t), to test against the alternative H1 : F (x) ̸= G(x)

∆+
m,n = sup[Fm(t)−Gn(x)]W (Em+n(t)), to test against the alternative H1 : F (x) > G(x)

∆−
m,n = sup[Gn(t)− Fm(x)]W (Em+n(t)), to test against the alternative H1 : F (x) < G(x)

where Em+n(t) is the empirical cdf of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), W ()
is a strictly positive weight function defined on (0, 1). KSgeneral implements an exact algorithm
which is an extension of the Fortran 77 subroutine due to Nikiforov (1994), to calculate the exact p-
value P (Dm,n ≥ q), where q ∈ [0, 1] and Dm,n is the two-sample Kolmogorov-Smirnov goodness-
of-fit test defined on the space Ω of all possible (m+n)!

m!n! pairs of samples, X ′
m and Y ′

n of sizes m
and n, that are randomly drawn from the pooled sample Zm+n without replacement. If two data
samples {x1, . . . , xm} and {y1, . . . , yn} are supplied, the package computes P (Dm,n ≥ d), where
d is the observed value of ∆m,n computed based on these two observed samples. Samples may
come from any continuous, discrete or mixed distribution, i.e. the test allows repeated observations
to appear in the user provided data samples {x1, . . . , xm}, {y1, . . . , yn} and their pooled sample
Zm+n = {x1, . . . , xm, y1, . . . , yn}.

The two-sample (unweighted) Kuiper goodness-of-fit statistic is defined as:

ςm,n = sup[Fm(t)−Gn(t)]− inf[Fm(t)−Gn(t)].

It is widely used when the data samples are periodic or circular (data that are measured in radians).
KSgeneral calculates the exact p-value P (Vm,n ≥ q), where q ∈ [0, 2] and Vm,n is the two-sample
Kuiper goodness-of-fit test defined on the on the space, Ω, as described above. If two data samples
{x1, . . . , xm} and {y1, . . . , yn} are supplied, the package computes P (Vm,n ≥ v), where v is the
observed value of ςm,n computed based on these two observed samples. Similarly, as for the KS
test, the two-sample Kuiper test also allows repeated observations in the user provided data samples
{x1, . . . , xm}, {y1, . . . , yn} and their pooled sample Zm+n = {x1, . . . , xm, y1, . . . , yn}.
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Details

One-sample KS test:
The Exact-KS-FFT method to compute p-values of the one-sample KS test in KSgeneral is based
on expressing the p-value P (Dn ≥ q) in terms of an appropriate rectangle probability with respect
to the uniform order statistics, as noted by Gleser (1985) for P (Dn > q). The latter representation
is used to express P (Dn ≥ q) via a double-boundary non-crossing probability for a homogeneous
Poisson process, with intensity n, which is then efficiently computed using FFT, ensuring total run-
time of order O(n2log(n)) (see Dimitrova, Kaishev, Tan (2020) and also Moscovich and Nadler
(2017) for the special case when F (x) is continuous).

The code for the one-sample KS test in KSgeneral represents an R wrapper of the original C++
code due to Dimitrova, Kaishev, Tan (2020) and based on the C++ code developed by Moscovich
and Nadler (2017). The package includes the functions disc_ks_c_cdf, mixed_ks_c_cdf and
cont_ks_c_cdf that compute the complementary cdf P (Dn ≥ q), for a fixed q, 0 ≤ q ≤ 1, when
F (x) is purely discrete, mixed or continuous, respectively. KSgeneral includes also the functions
disc_ks_test, mixed_ks_test and cont_ks_test that compute the p-value P (Dn ≥ dn), where
dn is the value of the KS test statistic computed based on a user provided data sample {x1, ..., xn},
when F (x) is purely discrete, mixed or continuous, respectively.

The functions disc_ks_test and cont_ks_test represent accurate and fast (run time O(n2log(n)))
alternatives to the functions ks.test from the package dgof and the function ks.test from the
package stat, which compute p-values of P (Dn ≥ dn), assuming F (x) is purely discrete or con-
tinuous, respectively.

The package also includes the function ks_c_cdf_Rcpp which gives the flexibility to compute the
complementary cdf (p-value) for the one-sided KS test statistics D−

n or D+
n . It also allows for faster

computation time and possibly higher accuracy in computing P (Dn ≥ q).

Two-sample KS test and Kuiper test:
The method underlying for computing p-values of the two-sample KS and Kuiper tests in KSgen-
eral is the extension of the algorithm due to Nikiforov (1994) and is based on expressing the p-value
as the probability that a point sequence stays within a certain region in the two-dimensional integer-
valued lattice. The algorithm for both tests uses a recursive formula to calculate the total number
of point sequences within the region which is divided by the total number of elements in Ω, i.e.
(m+n)!
m!n! to obtain the probability.

For a particular realization of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), the p-values
calculated by the functions KS2sample and Kuiper2sample are the probabilities:

P (Dm,n ≥ q), P (Vm,n ≥ q),

where Dm,n and Vm,n are the two-sample Kolmogorov-Smirnov and Kuiper test statistics respec-
tively, for two samples X ′

m and Y ′
n of sizes m and n, randomly drawn from the pooled sample

without replacement, i.e. they are defined on the space Ω and q ∈ [0, 1] for the KS test, q ∈ [0, 2]
for the Kuiper test.

Both KS2sample and Kuiper2sample implement algorithms which generalize the method due to
Nikiforov (1994), and calculate the exact p-values of the KS test and the Kuiper test respectively.
Both of them allow tested data samples to come from continuous, discrete or mixed distributions
(ties are also allowed).

KS2sample ensures a total worst-case run-time of order O(nm). Compared with other known algo-
rithms, it not only allows more flexible choices on weights leading to better power (see Dimitrova,
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Jia, Kaishev 2024), but also is more efficient and more generally applicable for large sample sizes.
Kuiper2sample is accurate and valid for large sample sizes. It ensures a total worst-case run-time
of order O((mn)2). When m and n have large greatest common divisor (an extreme case is m = n),
it ensures a total worst-case run-time of order O((m)2n).

Author(s)

Dimitrina S. Dimitrova <D.Dimitrova@city.ac.uk>, Yun Jia <yunjia2019@gmail.com>, Vladimir
K. Kaishev <Vladimir.Kaishev.1@city.ac.uk>, Senren Tan <raymondtsrtsr@outlook.com>

Maintainer: Dimitrina S. Dimitrova <D.Dimitrova@city.ac.uk>

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Gleser L.J. (1985). "Exact Power of Goodness-of-Fit Tests of Kolmogorov Type for Discontinuous
Distributions". Journal of the American Statistical Association, 80(392), 954-958.

Moscovich A., Nadler B. (2017). "Fast Calculation of Boundary Crossing Probabilities for Poisson
Processes". Statistics and Probability Letters, 123, 177-182.

Dimitrina S. Dimitrova, Yun Jia, Vladimir K. Kaishev (2024). "The R functions KS2sample and
Kuiper2sample: Efficient Exact Calculation of P-values of the Two-sample Kolmogorov-Smirnov
and Kuiper Tests". submitted

cont_ks_cdf Computes the cumulative distribution function of the two-sided
Kolmogorov-Smirnov statistic when the cdf under the null hypothe-
sis is continuous

Description

Computes the cdf P (Dn ≤ q) ≡ P (Dn < q) at a fixed q, q ∈ [0, 1], for the one-sample two-sided
Kolmogorov-Smirnov statistic, Dn, for a given sample size n, when the cdf F (x) under the null
hypothesis is continuous.

Usage

cont_ks_cdf(q, n)

Arguments

q numeric value between 0 and 1, at which the cdf P (Dn ≤ q) is computed

n the sample size
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Details

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x).

The function cont_ks_cdf implements the FFT-based algorithm proposed by Moscovich and Nadler
(2017) to compute the cdf P (Dn ≤ q) at a value q, when F (x) is continuous. This algorithm
ensures a total worst-case run-time of order O(n2log(n)) which makes it more efficient and numer-
ically stable than the algorithm proposed by Marsaglia et al. (2003). The latter is used by many
existing packages computing the cdf of Dn, e.g., the function ks.test in the package stats and
the function ks.test in the package dgof. More precisely, in these packages, the exact p-value,
P (Dn ≥ q) is computed only in the case when q = dn, where dn is the value of the KS statis-
tic computed based on a user provided sample {x1, ..., xn}. Another limitation of the functions
ks.test is that the sample size should be less than 100, and the computation time is O(n3). In
contrast, the function cont_ks_cdf provides results with at least 10 correct digits after the decimal
point for sample sizes n up to 100000 and computation time of 16 seconds on a machine with an
2.5GHz Intel Core i5 processor with 4GB RAM, running MacOS X Yosemite. For n > 100000,
accurate results can still be computed with similar accuracy, but at a higher computation time. See
Dimitrova, Kaishev, Tan (2020), Appendix B for further details and examples.

Value

Numeric value corresponding to P (Dn ≤ q).

Source

Based on the C++ code available at https://github.com/mosco/crossing-probability devel-
oped by Moscovich and Nadler (2017). See also Dimitrova, Kaishev, Tan (2020) for more details.

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Marsaglia G., Tsang WW., Wang J. (2003). "Evaluating Kolmogorov’s Distribution". Journal of
Statistical Software, 8(18), 1-4.

Moscovich A., Nadler B. (2017). "Fast Calculation of Boundary Crossing Probabilities for Poisson
Processes". Statistics and Probability Letters, 123, 177-182.

Examples

## Compute the value for P(D_{100} <= 0.05)

KSgeneral::cont_ks_cdf(0.05, 100)

## Compute P(D_{n} <= q)
## for n = 100, q = 1/500, 2/500, ..., 500/500

https://github.com/mosco/crossing-probability
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## and then plot the corresponding values against q

n<-100
q<-1:500/500
plot(q, sapply(q, function(x) KSgeneral::cont_ks_cdf(x, n)), type='l')

## Compute P(D_{n} <= q) for n = 40, nq^{2} = 0.76 as shown
## in Table 9 of Dimitrova, Kaishev, Tan (2020)

KSgeneral::cont_ks_cdf(sqrt(0.76/40), 40)

cont_ks_c_cdf Computes the complementary cumulative distribution function of the
two-sided Kolmogorov-Smirnov statistic when the cdf under the null
hypothesis is continuous

Description

Computes the complementary cdf P (Dn ≥ q) ≡ P (Dn > q) at a fixed q, q ∈ [0, 1], for the
one-sample two-sided Kolmogorov-Smirnov statistic, Dn, for a given sample size n, when the cdf
F (x) under the null hypothesis is continuous.

Usage

cont_ks_c_cdf(q, n)

Arguments

q numeric value between 0 and 1, at which the complementary cdf P (Dn ≥ q) is
computed

n the sample size

Details

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the two-sided Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x).

The function cont_ks_c_cdf implements the FFT-based algorithm proposed by Moscovich and
Nadler (2017) to compute the complementary cdf, P (Dn ≥ q) at a value q, when F (x) is con-
tinuous. This algorithm ensures a total worst-case run-time of order O(n2log(n)) which makes it
more efficient and numerically stable than the algorithm proposed by Marsaglia et al. (2003). The
latter is used by many existing packages computing the cdf of Dn, e.g., the function ks.test in the
package stats and the function ks.test in the package dgof. More precisely, in these packages,
the exact p-value, P (Dn ≥ q) is computed only in the case when q = dn, where dn is the value of
the KS test statistic computed based on a user provided sample {x1, ..., xn}. Another limitation of
the functions ks.test is that the sample size should be less than 100, and the computation time is
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O(n3). In contrast, the function cont_ks_c_cdf provides results with at least 10 correct digits after
the decimal point for sample sizes n up to 100000 and computation time of 16 seconds on a ma-
chine with an 2.5GHz Intel Core i5 processor with 4GB RAM, running MacOS X Yosemite. For n
> 100000, accurate results can still be computed with similar accuracy, but at a higher computation
time. See Dimitrova, Kaishev, Tan (2020), Appendix C for further details and examples.

Value

Numeric value corresponding to P (Dn ≥ q).

Source

Based on the C++ code available at https://github.com/mosco/crossing-probability devel-
oped by Moscovich and Nadler (2017). See also Dimitrova, Kaishev, Tan (2020) for more details.

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Marsaglia G., Tsang WW., Wang J. (2003). "Evaluating Kolmogorov’s Distribution". Journal of
Statistical Software, 8(18), 1-4.

Moscovich A., Nadler B. (2017). "Fast Calculation of Boundary Crossing Probabilities for Poisson
Processes". Statistics and Probability Letters, 123, 177-182.

Examples

## Compute the value for P(D_{100} >= 0.05)

KSgeneral::cont_ks_c_cdf(0.05, 100)

## Compute P(D_{n} >= q)
## for n = 100, q = 1/500, 2/500, ..., 500/500
## and then plot the corresponding values against q

n <- 100
q <- 1:500/500
plot(q, sapply(q, function(x) KSgeneral::cont_ks_c_cdf(x, n)), type='l')

## Compute P(D_{n} >= q) for n = 141, nq^{2} = 2.1 as shown
## in Table 18 of Dimitrova, Kaishev, Tan (2020)

KSgeneral::cont_ks_c_cdf(sqrt(2.1/141), 141)

https://github.com/mosco/crossing-probability
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cont_ks_test Computes the p-value for a one-sample two-sided Kolmogorov-
Smirnov test when the cdf under the null hypothesis is continuous

Description

Computes the p-value P (Dn ≥ dn) ≡ P (Dn > dn), where dn is the value of the KS test statistic
computed based on a data sample {x1, ..., xn}, when F (x) is continuous.

Usage

cont_ks_test(x, y, ...)

Arguments

x a numeric vector of data sample values {x1, ..., xn}.

y a pre-specified continuous cdf, F (x) under the null hypothesis. Note that y
should be a character string naming a continuous cumulative distribution func-
tion such as pexp, pnorm, etc. Only continuous cdfs are valid!

... values of the parameters of the cdf, F (x) specified (as a character string) by y.

Details

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the two-sided Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x).

The function cont_ks_test implements the FFT-based algorithm proposed by Moscovich and
Nadler (2017) to compute the p-value P (Dn ≥ dn), where dn is the value of the KS test statistic
computed based on a user provided data sample {x1, ..., xn}, assuming F (x) is continuous. This
algorithm ensures a total worst-case run-time of order O(n2log(n)) which makes it more efficient
and numerically stable than the algorithm proposed by Marsaglia et al. (2003). The latter is used by
many existing packages computing the cdf of Dn, e.g., the function ks.test in the package stats
and the function ks.test in the package dgof. A limitation of the functions ks.test is that the
sample size should be less than 100, and the computation time is O(n3). In contrast, the function
cont_ks_test provides results with at least 10 correct digits after the decimal point for sample
sizes n up to 100000 and computation time of 16 seconds on a machine with an 2.5GHz Intel Core
i5 processor with 4GB RAM, running MacOS X Yosemite. For n > 100000, accurate results can
still be computed with similar accuracy, but at a higher computation time. See Dimitrova, Kaishev,
Tan (2020), Appendix C for further details and examples.

Value

A list with class "htest" containing the following components:

statistic the value of the statistic.
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p.value the p-value of the test.

alternative "two-sided".

data.name a character string giving the name of the data.

Source

Based on the C++ code available at https://github.com/mosco/crossing-probability devel-
oped by Moscovich and Nadler (2017). See also Dimitrova, Kaishev, Tan (2020) for more details.

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Moscovich A., Nadler B. (2017). "Fast Calculation of Boundary Crossing Probabilities for Poisson
Processes". Statistics and Probability Letters, 123, 177-182.

Examples

## Comparing the p-values obtained by stat::ks.test
## and KSgeneral::cont_ks_test

x<-abs(rnorm(100))
p.kt <- ks.test(x, "pexp", exact = TRUE)$p
p.kt_fft <- KSgeneral::cont_ks_test(x, "pexp")$p
abs(p.kt-p.kt_fft)

disc_ks_c_cdf Computes the complementary cumulative distribution function of the
two-sided Komogorov-Smirnov statistic when the cdf under the null
hypothesis is purely discrete

Description

Computes the complementary cdf, P (Dn ≥ q) at a fixed q, q ∈ [0, 1], of the one-sample two-sided
Kolmogorov-Smirnov (KS) statistic, when the cdf F (x) under the null hypothesis is purely dis-
crete, using the Exact-KS-FFT method expressing the p-value as a double-boundary non-crossing
probability for a homogeneous Poisson process, which is then efficiently computed using FFT (see
Dimitrova, Kaishev, Tan (2020)). Moreover, for comparison purposes, disc_ks_c_cdf gives, as an
option, the possibility to compute (an approximate value for) the asymptotic P (Dn ≥ q) using the
simulation-based algorithm of Wood and Altavela (1978).

Usage

disc_ks_c_cdf(q, n, y, ..., exact = NULL, tol = 1e-08, sim.size = 1e+06, num.sim = 10)

https://github.com/mosco/crossing-probability
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Arguments

q numeric value between 0 and 1, at which the complementary cdf P (Dn ≥ q) is
computed

n the sample size

y a pre-specified discrete cdf, F (x) under the null hypothesis. Note that y should
be a step function within the class: stepfun, of which ecdf is a subclass!

... values of the parameters of the cdf, F (x), specified (as a character string) by y.

exact logical variable specifying whether one wants to compute exact p-value P (Dn ≥
q) using the Exact-KS-FFT method, in which case exact = TRUE or wants to
compute an approximate p-value P (Dn ≥ q) using the simulation-based algo-
rithm of Wood and Altavela (1978), in which case exact = FALSE. When exact
= NULL and n <= 100000, the exact P (Dn ≥ q) will be computed using the
Exact-KS-FFT method. Otherwise, the asymptotic complementary cdf is com-
puted based on Wood and Altavela (1978). By default, exact = NULL.

tol the value of ϵ that is used to compute the values of Ai and Bi, i = 1, ..., n, as
detailed in Step 1 of Section 2.1 in Dimitrova, Kaishev and Tan (2020) (see also
(ii) in the Procedure Exact-KS-FFT therein). By default, tol = 1e-08. Note that
a value of NA or 0 will lead to an error!

sim.size the required number of simulated trajectories in order to produce one Monte
Carlo estimate (one MC run) of the asymptotic complementary cdf using the
algorithm of Wood and Altavela (1978). By default, sim.size = 1e+06.

num.sim the number of MC runs, each producing one estimate (based on sim.size num-
ber of trajectories), which are then averaged in order to produce the final esti-
mate for the asymptotic complementary cdf. This is done in order to reduce the
variance of the final estimate. By default, num.sim = 10.

Details

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the two-sided Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x).

The function disc_ks_c_cdf implements the Exact-KS-FFT method, proposed by Dimitrova, Kai-
shev, Tan (2020) to compute the complementary cdf P (Dn ≥ q) at a value q, when F (x) is purely
discrete. This algorithm ensures a total worst-case run-time of order O(n2log(n)) which makes
it more efficient and numerically stable than the only alternative algorithm developed by Arnold
and Emerson (2011) and implemented as the function ks.test in the package dgof. The latter
only computes a p-value P (Dn ≥ dn), corresponding to the value of the KS test statistic dn com-
puted based on a user provided sample {x1, ..., xn}. More precisely, in the package dgof (function
ks.test), the p-value for a one-sample two-sided KS test is calculated by combining the approaches
of Gleser (1985) and Niederhausen (1981). However, the function ks.test only provides exact p-
values for n ≤ 30, since as noted by the authors (see Arnold and Emerson (2011)), when n is
large, numerical instabilities may occur. In the latter case, ks.test uses simulation to approximate
p-values, which may be rather slow and inaccurate (see Table 6 of Dimitrova, Kaishev, Tan (2020)).
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Thus, making use of the Exact-KS-FFT method, the function disc_ks_c_cdf provides an exact
and highly computationally efficient (alternative) way of computing P (Dn ≥ q) at a value q, when
F (x) is purely discrete.

Lastly, incorporated into the function disc_ks_c_cdf is the MC simulation-based method of Wood
and Altavela (1978) for estimating the asymptotic complementary cdf of Dn. The latter method is
the default method behind disc_ks_c_cdf when the sample size n is n ≥ 100000.

Value

Numeric value corresponding to P (Dn ≥ q).

References

Arnold T.A., Emerson J.W. (2011). "Nonparametric Goodness-of-Fit Tests for Discrete Null Dis-
tributions". The R Journal, 3(2), 34-39.

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Gleser L.J. (1985). "Exact Power of Goodness-of-Fit Tests of Kolmogorov Type for Discontinuous
Distributions". Journal of the American Statistical Association, 80(392), 954-958.

Niederhausen H. (1981). "Sheffer Polynomials for Computing Exact Kolmogorov-Smirnov and
Renyi Type Distributions". The Annals of Statistics, 58-64.

Wood C.L., Altavela M.M. (1978). "Large-Sample Results for Kolmogorov-Smirnov Statistics for
Discrete Distributions". Biometrika, 65(1), 235-239.

See Also

ks.test

Examples

## Example to compute the exact complementary cdf for D_{n}
## when the underlying cdf F(x) is a binomial(3, 0.5) distribution,
## as shown in Example 3.4 of Dimitrova, Kaishev, Tan (2020)

binom_3 <- stepfun(c(0:3), c(0,pbinom(0:3,3,0.5)))
KSgeneral::disc_ks_c_cdf(0.05, 400, binom_3)

## Not run:
## Compute P(D_{n} >= q) for n = 100,
## q = 1/5000, 2/5000, ..., 5000/5000, when
## the underlying cdf F(x) is a binomial(3, 0.5) distribution,
## as shown in Example 3.4 of Dimitrova, Kaishev, Tan (2020),
## and then plot the corresponding values against q,
## i.e. plot the resulting complementary cdf of D_{n}

n <- 100
q <- 1:5000/5000
binom_3 <- stepfun(c(0:3), c(0,pbinom(0:3,3,0.5)))
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plot(q, sapply(q, function(x) KSgeneral::disc_ks_c_cdf(x, n, binom_3)), type='l')

## End(Not run)

## Not run:
## Example to compute the asymptotic complementary cdf for D_{n}
## based on Wood and Altavela (1978),
## when the underlying cdf F(x) is a binomial(3, 0.5) distribution,
## as shown in Example 3.4 of Dimitrova, Kaishev, Tan (2020)

binom_3 <- stepfun(c(0: 3), c(0, pbinom(0 : 3, 3, 0.5)))
KSgeneral::disc_ks_c_cdf(0.05, 400, binom_3, exact = FALSE, tol = 1e-08,
sim.size = 1e+06, num.sim = 10)

## End(Not run)

disc_ks_test Computes the p-value for a one-sample two-sided Kolmogorov-
Smirnov test when the cdf under the null hypothesis is purely discrete

Description

Computes the p-value P (Dn ≥ dn), where dn is the value of the KS test statistic computed based
on a data sample {x1, ..., xn}, when F (x) is purely discrete, using the Exact-KS-FFT method
expressing the p-value as a double-boundary non-crossing probability for a homogeneous Poisson
process, which is then efficiently computed using FFT (see Dimitrova, Kaishev, Tan (2020)).

Usage

disc_ks_test(x, y, ..., exact = NULL, tol = 1e-08, sim.size = 1e+06, num.sim = 10)

Arguments

x a numeric vector of data sample values {x1, ..., xn}.

y a pre-specified discrete cdf, F (x), under the null hypothesis. Note that y should
be a step function within the class: stepfun, of which ecdf is a subclass!

... values of the parameters of the cdf, F (x), specified (as a character string) by y.

exact logical variable specifying whether one wants to compute exact p-value P (Dn ≥
dn) using the Exact-KS-FFT method, in which case exact = TRUE or wants to
compute an approximate p-value P (Dn ≥ dn) using the simulation-based algo-
rithm of Wood and Altavela (1978), in which case exact = FALSE. When exact
= NULL and n <= 100000, the exact P (Dn ≥ dn) will be computed using the
Exact-KS-FFT method. Otherwise, the asymptotic complementary cdf is com-
puted based on Wood and Altavela (1978). By default, exact = NULL.
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tol the value of ϵ that is used to compute the values of Ai and Bi, i = 1, ..., n, as
detailed in Step 1 of Section 2.1 in Dimitrova, Kaishev and Tan (2020) (see also
(ii) in the Procedure Exact-KS-FFT therein). By default, tol = 1e-08. Note that
a value of NA or 0 will lead to an error!

sim.size the required number of simulated trajectories in order to produce one Monte
Carlo estimate (one MC run) of the asymptotic p-value using the algorithm of
Wood and Altavela (1978). By default, sim.size = 1e+06.

num.sim the number of MC runs, each producing one estimate (based on sim.size num-
ber of trajectories), which are then averaged in order to produce the final esti-
mate for the asymptotic p-value. This is done in order to reduce the variance of
the final estimate. By default, num.sim = 10.

Details

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the two-sided Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x).

The function disc_ks_test implements the Exact-KS-FFT method expressing the p-value as a
double-boundary non-crossing probability for a homogeneous Poisson process, which is then ef-
ficiently computed using FFT (see Dimitrova, Kaishev, Tan (2020)). It represents an accurate and
fast (run time O(n2log(n))) alternative to the function ks.test from the package dgof, which com-
putes a p-value P (Dn ≥ dn), where dn is the value of the KS test statistic computed based on a
user provided data sample {x1, ..., xn}, assuming F (x) is purely discrete.

In the function ks.test, the p-value for a one-sample two-sided KS test is calculated by combining
the approaches of Gleser (1985) and Niederhausen (1981). However, the function ks.test due to
Arnold and Emerson (2011) only provides exact p-values for n ≤ 30, since as noted by the authors,
when n is large, numerical instabilities may occur. In the latter case, ks.test uses simulation to
approximate p-values, which may be rather slow and inaccurate (see Table 6 of Dimitrova, Kaishev,
Tan (2020)).

Thus, making use of the Exact-KS-FFT method, the function disc_ks_test provides an exact and
highly computationally efficient (alternative) way of computing the p-value P (Dn ≥ dn), when
F (x) is purely discrete.

Lastly, incorporated into the function disc_ks_test is the MC simulation-based method of Wood
and Altavela (1978) for estimating the asymptotic p-value of Dn. The latter method is the default
method behind disc_ks_test when the sample size n is n ≥ 100000.

Value

A list with class "htest" containing the following components:

statistic the value of the statistic.

p.value the p-value of the test.

alternative "two-sided".

data.name a character string giving the name of the data.
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See Also

ks.test

Examples

# Comparison of results obtained from dgof::ks.test
# and KSgeneral::disc_ks_test, when F(x) follows the discrete
# Uniform[1, 10] distribution as in Example 3.5 of
# Dimitrova, Kaishev, Tan (2020)

# When the sample size is larger than 100, the
# function dgof::ks.test will be numerically
# unstable

x3 <- sample(1:10, 25, replace = TRUE)
KSgeneral::disc_ks_test(x3, ecdf(1:10), exact = TRUE)
dgof::ks.test(x3, ecdf(1:10), exact = TRUE)
KSgeneral::disc_ks_test(x3, ecdf(1:10), exact = TRUE)$p -

dgof::ks.test(x3, ecdf(1:10), exact = TRUE)$p

x4 <- sample(1:10, 500, replace = TRUE)
KSgeneral::disc_ks_test(x4, ecdf(1:10), exact = TRUE)
dgof::ks.test(x4, ecdf(1:10), exact = TRUE)
KSgeneral::disc_ks_test(x4, ecdf(1:10), exact = TRUE)$p -

dgof::ks.test(x4, ecdf(1:10), exact = TRUE)$p

# Using stepfun() to specify the same discrete distribution as defined by ecdf():

steps <- stepfun(1:10, cumsum(c(0, rep(0.1, 10))))
KSgeneral::disc_ks_test(x3, steps, exact = TRUE)
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KS2sample Computes the p-value for a (weighted) two-sample Kolmogorov-
Smirnov test, given an arbitrary positive weight function and arbitrary
data samples with possibly repeated observations (i.e. ties)

Description

Computes the p-value P (Dm,n ≥ q), where Dm,n is the one- or two-sided two-sample Kolmogorov-
Smirnov test statistic with weight function weight, when q = d, i.e. the observed value of KS
statistic computed based on two data samples {x1, ..., xm} and {y1, ..., yn} that may come from
continuous, discrete or mixed distribution, i.e. they may have repeated observations (ties).

Usage

KS2sample(x, y, alternative = c("two.sided", "less", "greater"),
conservative = F, weight = 0, tol = 1e-08, tail = T)

Arguments

x a numeric vector of data sample values {x1, ..., xm}.

y a numeric vector of data sample values {y1, ..., yn}
alternative Indicates the alternative hypothesis and must be one of "two.sided" (default),

"less", or "greater". One can specify just the initial letter of the string, but the
argument name must be given in full, e.g. alternative = "t". See ‘Details’ for
the meaning of the possible values.

conservative logical variable indicating whether ties should be considered. See ‘Details’ for
the meaning.

weight either a numeric value between 0 and 1 which specifies the form of the weight
function from a class of pre-defined functions, or a user-defined strictly posi-
tive function of one variable. By default, no weight function is assumed. See
‘Details’ for the meaning of the possible values.

tol the value of ϵ for computing P (Dm,n > q−ϵ), which is equivalent to P (Dm,n ≥
q). Non-positive input (tol≤ 0) or large input (tol>1e-6) are replaced by tol
= 1e-6. In cases when m and n have large least common multiple, a smaller value
is highly recommended.

tail logical variable indicating whether a p-value, P (Dm,n ≥ q) or one minus the p-
value, P (Dm,n < q), should be computed. By default, the p-value P (Dm,n ≥
q) is computed. See ‘Details’ for the meaning.

Details

Given a pair of random samples Xm = (X1, ..., Xm) and Yn = (Y1, ..., Yn) of sizes m and n with
empirical cdfs Fm(t) and Gn(t) respectively, coming from some unknown cdfs F (x) and G(x).
It is assumed that F (x) and G(x) could be either continuous, discrete or mixed, which means that
repeated observations are allowed in the corresponding observed samples. The task is to test the null
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hypothesis H0 : F (x) = G(x) for all x, either against the alternative hypothesis H1 : F (x) ̸= G(x)
for at least one x, which corresponds to the two-sided test, or against H1 : F (x) > G(x) and
H1 : F (x) < G(x) for at least one x, which corresponds to the two one-sided tests. The (weighted)
two-sample Kolmogorov-Smirnov goodness-of-fit statistics that are used to test these hypotheses
are generally defined as:

∆m,n = sup |Fm(t)−Gn(t)|W (Em+n(t), to test against the alternative H1 : F (x) ̸= G(x)

∆+
m,n = sup[Fm(t)−Gn(x)]W (Em+n(t)), to test against the alternative H1 : F (x) > G(x)

∆−
m,n = sup[Gn(t)− Fm(x)]W (Em+n(t)), to test against the alternative H1 : F (x) < G(x),

where Em+n(t) is the empirical cdf of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), W ()
is a strictly positive weight function defined on [0, 1].

Possible values of alternative are "two.sided", "greater" and "less" which specify the alter-
native hypothesis, i.e. specify the test statistics to be either ∆m,n, ∆+

m,n or ∆−
m,n respectively.

When weight is assigned with a numeric value ν between 0 and 1, the test statistic is specified
as the weighted two-sample Kolmorogov-Smirnov test with generalized Anderson-Darling weight
W (t) = 1/[t(1 − t)]ν (see Finner and Gontscharuk 2018). Then for example, the two-sided two-
sample Kolmogorov-Smirnov statistic has the following form:

∆m,n = sup
t

|Fm(t)−Gn(t)|
[Em+n(t)(1− Em+n(t))]ν

The latter specification defines a family of weighted Kolmogorov-Smirnov tests, covering the un-
weighted test (when weight = ν = 0), and the widely-known weighted Kolmogorov-Smirnov test
with Anderson-Darling weight (when weight = 0.5, see definition of this statistic also in Canner
1975). If one wants to implement a weighted test with a user-specified weight function, for example,
W (t) = 1/[t(2− t)]1/2 suggested by Buning (2001), which ensures higher power when both x and
y come from distributions that are left-skewed and heavy-tailed, one can directly assign a univariate
function with output value 1/sqrt(t*(2-t)) to weight. See ‘Examples’ for this demonstration.

For a particular realization of the pooled sample Zm,n, let there be k distinct values, a1 < a2 <
... < ak, in the ordered, pooled sample (z1 ≤ z2 ≤ . . . ≤ zm+n), where k ≤ m+n, and where mi

is the number of times ai, i = 1, . . . , k appears in the pooled sample. The p-value is then defined
as the probability

p = P (Dm,n ≥ q) ,

where Dm,n is the two-sample Kolmogorov-Smirnov test statistic defined according to the value of
weight and alternative, for two samples X ′

m and Y ′
n of sizes m and n, randomly drawn from the

pooled sample without replacement and q = d, the observed value of the statistic calculated based
on the user provided data samples x and y. By default tail = T, the p-value is returned, otherwise
1− p is returned.

Note that, Dm,n is defined on the space Ω of all possible pairs, C = (m+n)!
m!n! of edfs Fm(x, ω)

and Gn(x, ω), ω ∈ Ω, that correspond to the pairs of samples X ′
m and Y ′

n, randomly drawn from,
Zm+n, as follows. First, m observations are drawn at random without replacement, forming the first
sample X ′

m, with corresponding edf, Fm(x, ω). The remaining n observations are then assigned to
the second sample Y ′

n, with corresponding edf Gn(x, ω). Observations are then replaced back in
Zm+n and re-sampling is continued until the occurrence of all the C possible pairs of edfs Fm(x, ω)
and Gn(x, ω), ω ∈ Ω. The pairs of edf’s may be coincident if there are ties in the data and each
pair, Fm(x, ω) and Gn(x, ω) occurs with probability 1/C.
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conservative is a logical variable whether the test should be conducted conservatively. By default,
conservative = F, KS2sample returns the p-value that is defined through the conditional probabil-
ity above. However, when the user has a priori knowledge that both samples are from a continuous
distribution even if ties are present, for example, repeated observations are caused by rounding er-
rors, the value conservative = T should be assigned, since the conditional probability is no longer
relevant. In this case, KS2sample computes p-values for the Kolmogorov-Smirnov test assuming
no ties are present, and returns a p-value which is an upper bound of the true p-value. Note that,
if the null hypothesis is rejected using the calculated upper bound for the p-value, it should also be
rejected with the true p-value.

KS2sample calculates the exact p-value of the KS test using an algorithm which generalizes the
method due to Nikiforov (1994). If tail = F, KS2sample calculates the complementary p-value,
1− p. For the purpose, an exact algorithm which generalizes the method due to Nikiforov (1994) is
implemented. Alternatively, if tail = T, a version of the Nikiforov’s recurrence proposed recently
by Viehmann (2021) is implemented, which computes directly the p-value, with higher accuracy,
giving up to 17 correct digits, but at up to 3 times higher computational cost. KS2sample ensures
a total worst-case run-time of order O(nm). In comparison with other known algorithms, it not
only allows the flexible choice of weights which in some cases improve the statistical power (see
Dimitrova, Jia, Kaishev 2024), but also is more efficient and generally applicable for large sample
sizes.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic d.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving names of the data.

Source

Based on the Fortran subroutine by Nikiforov (1994). See also Dimitrova, Jia, Kaishev (2024).
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tics with a Particular Weight Function". Journal of the American Statistical Association, 70(349),
209-211.

Nikiforov, A. M. (1994). "Algorithm AS 288: Exact Smirnov Two-Sample Tests for Arbitrary
Distributions." Journal of the Royal Statistical Society. Series C (Applied Statistics), 43(1), 265-
270.



KS2sample_c_Rcpp 19

Viehmann, T. (2021). Numerically more stable computation of the p-values for the two-sample
Kolmogorov-Smirnov test. arXiv preprint arXiv:2102.08037.

Dimitrina S. Dimitrova, Yun Jia, Vladimir K. Kaishev (2024). "The R functions KS2sample and
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and Kuiper Tests". submitted

Examples

##Computes p-value of two-sided unweighted test for continuous data
data1 <- rexp(750, 1)
data2 <- rexp(800, 1)
KS2sample(data1, data2)
##Computes the complementary p-value
KS2sample(data1, data2, tail = FALSE)
##Computes p-value of one-sided test with Anderson-Darling weight function
KS2sample(data1, data2, alternative = "greater", weight = 0.5)

##Computes p-values of two-sided test with Buning's weight function for discrete data
data3 <- rnbinom(100, size = 3, prob = 0.6)
data4 <- rpois(120, lambda = 2)
f <- function(t) 1 / sqrt( t * (2 - t) )
KS2sample(data3, data4, weight = f)

KS2sample_c_Rcpp R function calling the C++ routines that compute the complementary
p-value for a (weighted) two-sample Kolmogorov-Smirnov (KS) test,
given an arbitrary positive weight function and arbitrary data samples
with possibly repeated observations (i.e. ties)

Description

Function calling directly the C++ routines that compute the exact complementary p-value P (Dm,n <
q) for the (weighed) two-sample one- or two-sided Kolmogorov-Smirnov statistic, at a fixed q,
q ∈ [0, 1], given the sample sizes m and n, the vector of weights w_vec and the vector M containing
the number of times each distinct observation is repeated in the pooled sample.

Usage

KS2sample_c_Rcpp(m, n, kind, M, q, w_vec, tol)

Arguments

m the sample size of first tested sample.

n the sample size of second tested sample.

kind an integer value (= 1,2 or 3) which specified the alternative hypothesis. When =
1, the test is two-sided. When = 2 or 3, the test is one-sided. See ‘Details’ for
the meaning of the possible values. Other value is invalid.
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M an integer-valued vector with k cells, where k denotes the number of distinct
values in the ordered pooled sample of tested pair of samples(i.e. a1 < a2 <
. . . < ak). M[i] is the number of times that ai is repeated in the pooled sample.
A valid M must have strictly positive integer values and have the sum of all cells
equals to m+n.

q numeric value between 0 and 1, at which the p-value P (Dm,n < q) is computed.

w_vec a vector with m+n-1 cells, giving weights to each observation in the pooled sam-
ple. Valid w_vec must have m+n-1 cells and strictly positive value. See ‘Details’
for the meaning of values in each cell.

tol the value of ϵ for computing P (Dm,n ≤ q−ϵ), which is equivalent to P (Dm,n <
q). Non-positive input (tol ≤ 0) or large input (tol >1e-6) are replaced by
tol=1e-6. In cases when m and n have large least common multiple, a smaller
value is highly recommended.

Details

Given a pair of random samples Xm = (X1, ..., Xm) and Yn = (Y1, ..., Yn) of sizes m and n with
empirical cdfs Fm(t) and Gn(t) respectively, coming from some unknown cdfs F (x) and G(x).
It is assumed that F (x) and G(x) could be either continuous, discrete or mixed, which means that
repeated observations are allowed in the corresponding observed samples. The task is to test the null
hypothesis H0 : F (x) = G(x) for all x, either against the alternative hypothesis H1 : F (x) ̸= G(x)
for at least one x, which corresponds to the two-sided test, or against H1 : F (x) > G(x) and
H1 : F (x) < G(x) for at least one x, which corresponds to the two one-sided tests. The (weighted)
two-sample Kolmogorov-Smirnov goodness-of-fit statistics that are used to test these hypotheses
are generally defined as:

∆m,n = sup |Fm(t)−Gn(t)|W (Em+n(t), to test against the alternative H1 : F (x) ̸= G(x)

∆+
m,n = sup[Fm(t)−Gn(x)]W (Em+n(t)), to test against the alternative H1 : F (x) > G(x)

∆−
m,n = sup[Gn(t)− Fm(x)]W (Em+n(t)), to test against the alternative H1 : F (x) < G(x),

where Em+n(t) is the empirical cdf of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), W ()
is a strictly positive weight function defined on [0, 1].

w_vec[i] (0<i<m + n) is then equal to W (Zi) = W ( i
m+n )(Zi is the i-th smallest observation

in the pooled sample Zm,n). Different value of w_vec specifies the weighted Kolmogorov-Smirnov
test differently. For example, when w_vec=rep(1,m+n-1), KS2sample_Rcpp calculates the p-value
of the unweighted two-sample Kolmogorov-Smirnov test, when w_vec = ((1:(m+n-1))*((m+n-1):1))^(-1/2),
it calculates the p-value for the weighted two-sample Kolmogorov-Smirnov test with Anderson-
Darling weight W (t) = 1/[t(1− t)]1/2.

Possible values of kind are 1,2 and 3, which specify the alternative hypothesis, i.e. specify the test
statistic to be either ∆m,n, ∆+

m,n or ∆−
m,n respectively.

The numeric array M specifies the number of repeated observations in the pooled sample. For a
particular realization of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), let there be k distinct
values, a1 < a2 < ... < ak, in the ordered, pooled sample (z1 ≤ z2 ≤ . . . ≤ zm+n), where
k ≤ m + n, and where mi=M[i] is the number of times ai, i = 1, . . . , k appears in the pooled
sample. The calculated complementary p-value is the conditional probability:

P (Dm,n < q)
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where Dm,n is the two-sample Kolmogorov-Smirnov test statistic defined according to the value of
weight and alternative, for two samples X ′

m and Y ′
n of sizes m and n, randomly drawn from

the pooled sample without replacement, i.e. Dm,n is defined on the space Ω (see further details in
KS2sample), and q ∈ [0, 1].

KS2sample_c_Rcpp implements an exact algorithm, extending the Fortran 77 subroutine due to
Nikiforov (1994), an extended functionality by allowing more flexible choice of weight, as well as
for large sample sizes. This leads to faster computation time, as well as, relatively high accuracy for
very large m and n (less accurate than KS2sample_Rcpp). Compared with other known algorithms,
it allows data samples come from continuous, discrete or mixed distribution(i.e. ties may appear),
and it is more efficient and more generally applicable for large sample sizes. This algorithm ensures
a total worst-case run-time of order O(nm).

Value

Numeric value corresponding to P (Dm,n < q), given sample sizes m, n, M and w_vec. If the value
of m, n are non-positive, or if the length of w_vec is not equal to m+n-1, then the function returns -1,
the non-permitted value of M or non-permitted value inside w_vec returns -2, numerically unstable
calculation returns -3.

Source

Based on the Fortran subroutine by Nikiforov (1994). See also Dimitrova, Jia, Kaishev (2024).

References

Paul L. Canner (1975). "A Simulation Study of One- and Two-Sample Kolmogorov-Smirnov Statis-
tics with a Particular Weight Function". Journal of the American Statistical Association, 70(349),
209-211.

Nikiforov, A. M. (1994). "Algorithm AS 288: Exact Smirnov Two-Sample Tests for Arbitrary Dis-
tributions." Journal of the Royal Statistical Society. Series C (Applied Statistics), 43(1), 265–270.

Dimitrina S. Dimitrova, Yun Jia, Vladimir K. Kaishev (2024). "The R functions KS2sample and
Kuiper2sample: Efficient Exact Calculation of P-values of the Two-sample Kolmogorov-Smirnov
and Kuiper Tests". submitted

Examples

## Computing the unweighted two-sample Kolmogorov-Smirnov test
## Example see in Nikiforov (1994)

m <- 120
n <- 150
kind <- 1
q <- 0.1
M <- c(80,70,40,80)
w_vec <- rep(1,m+n-1)
tol <- 1e-6
KS2sample_c_Rcpp(m, n, kind, M, q, w_vec, tol)

kind <- 2
KS2sample_c_Rcpp(m, n, kind, M, q, w_vec, tol)
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## Computing the weighted two-sample Kolmogorov-Smirnov test
## with Anderson-Darling weight
kind <- 3
w_vec <- ((1:(m+n-1))*((m+n-1):1))^(-1/2)
KS2sample_c_Rcpp(m, n, kind, M, q, w_vec, tol)

KS2sample_Rcpp R function calling the C++ routines that compute the p-value for a
(weighted) two-sample Kolmogorov-Smirnov (KS) test, given an arbi-
trary positive weight function and arbitrary data samples with possibly
repeated observations (i.e. ties)

Description

Function calling directly the C++ routines that compute the exact p-value P (Dm,n ≥ q) for the
(weighed) two-sample one- or two-sided Kolmogorov-Smirnov statistic, at a fixed q, q ∈ [0, 1],
given the sample sizes m and n, the vector of weights w_vec and the vector M containing the number
of times each distinct observation is repeated in the pooled sample.

Usage

KS2sample_Rcpp(m, n, kind, M, q, w_vec, tol)

Arguments

m the sample size of first tested sample.

n the sample size of second tested sample.

kind an integer value (= 1,2 or 3) which specified the alternative hypothesis. When =
1, the test is two-sided. When = 2 or 3, the test is one-sided. See ‘Details’ for
the meaning of the possible values. Other value is invalid.

M an integer-valued vector with k cells, where k denotes the number of distinct
values in the ordered pooled sample of tested pair of samples(i.e. a1 < a2 <
. . . < ak). M[i] is the number of times that ai is repeated in the pooled sample.
A valid M must have strictly positive integer values and have the sum of all cells
equals to m+n.

q numeric value between 0 and 1, at which the p-value P (Dm,n ≥ q) is computed.

w_vec a vector with m+n-1 cells, giving weights to each observation in the pooled sam-
ple. Valid w_vec must have m+n-1 cells and strictly positive value. See ‘Details’
for the meaning of values in each cell.

tol the value of ϵ for computing P (Dm,n > q−ϵ), which is equivalent to P (Dm,n ≥
q). Non-positive input (tol≤ 0) or large input (tol>1e-6) are replaced by tol
= 1e-6. In cases when m and n have large least common multiple, a smaller value
is highly recommended.
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Details

Given a pair of random samples Xm = (X1, ..., Xm) and Yn = (Y1, ..., Yn) of sizes m and n with
empirical cdfs Fm(t) and Gn(t) respectively, coming from some unknown cdfs F (x) and G(x).
It is assumed that F (x) and G(x) could be either continuous, discrete or mixed, which means that
repeated observations are allowed in the corresponding observed samples. The task is to test the null
hypothesis H0 : F (x) = G(x) for all x, either against the alternative hypothesis H1 : F (x) ̸= G(x)
for at least one x, which corresponds to the two-sided test, or against H1 : F (x) > G(x) and
H1 : F (x) < G(x) for at least one x, which corresponds to the two one-sided tests. The (weighted)
two-sample Kolmogorov-Smirnov goodness-of-fit statistics that are used to test these hypotheses
are generally defined as:

∆m,n = sup |Fm(t)−Gn(t)|W (Em+n(t), to test against the alternative H1 : F (x) ̸= G(x)

∆+
m,n = sup[Fm(t)−Gn(x)]W (Em+n(t)), to test against the alternative H1 : F (x) > G(x)

∆−
m,n = sup[Gn(t)− Fm(x)]W (Em+n(t)), to test against the alternative H1 : F (x) < G(x),

where Em+n(t) is the empirical cdf of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), W ()
is a strictly positive weight function defined on [0, 1].

w_vec[i] (0<i<m + n) is then equal to W (Zi) = W ( i
m+n )(Zi is the i-th smallest observation

in the pooled sample Zm,n). Different value of w_vec specifies the weighted Kolmogorov-Smirnov
test differently. For example, when w_vec=rep(1,m+n-1), KS2sample_Rcpp calculates the p-value
of the unweighted two-sample Kolmogorov-Smirnov test, when w_vec = ((1:(m+n-1))*((m+n-1):1))^(-1/2),
it calculates the p-value for the weighted two-sample Kolmogorov-Smirnov test with Anderson-
Darling weight W (t) = 1/[t(1− t)]1/2.

Possible values of kind are 1,2 and 3, which specify the alternative hypothesis, i.e. specify the test
statistic to be either ∆m,n, ∆+

m,n or ∆−
m,n respectively.

The numeric array M specifies the number of repeated observations in the pooled sample. For a
particular realization of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), let there be k distinct
values, a1 < a2 < ... < ak, in the ordered, pooled sample (z1 ≤ z2 ≤ . . . ≤ zm+n), where
k ≤ m + n, and where mi=M[i] is the number of times ai, i = 1, . . . , k appears in the pooled
sample. The p-value is then defined as the probability

P (Dm,n ≥ q) ,

where Dm,n is the two-sample Kolmogorov-Smirnov test statistic defined according to the value of
weight and alternative, for two samples X ′

m and Y ′
n of sizes m and n, randomly drawn from

the pooled sample without replacement, i.e. Dm,n is defined on the space Ω (see further details in
KS2sample), and q ∈ [0, 1].

KS2sample_Rcpp implements an exact algorithm, extending the Fortran 77 subroutine due to Niki-
forov (1994), an extended functionality by allowing more flexible choices of weight, as well as for
large sample sizes. A version of the Nikiforov’s recurrence proposed recently by Viehmann (2021)
is further incorporated, which computes directly the p-value, with higher accuracy, giving up to 17
correct digits, but at up to 3 times higher computational cost than KS2sample_c_Rcpp. Compared
with other known algorithms, it allows data samples to come from continuous, discrete or mixed
distribution(i.e. ties may appear), and it is more efficient and more generally applicable for large
sample sizes. This algorithm ensures a total worst-case run-time of order O(nm).
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Value

Numeric value corresponding to P (Dm,n ≥ q), given sample sizes m, n, M and w_vec. If the value
of m, n are non-positive, or if the length of w_vec is not equal to m+n-1, then the function returns -1,
the non-permitted value of M or non-permitted value inside w_vec returns -2, numerically unstable
calculation returns -3.

Source

Based on the Fortran subroutine by Nikiforov (1994). See also Dimitrova, Jia, Kaishev (2024).

References

Paul L. Canner (1975). "A Simulation Study of One- and Two-Sample Kolmogorov-Smirnov Statis-
tics with a Particular Weight Function". Journal of the American Statistical Association, 70(349),
209-211.

Nikiforov, A. M. (1994). "Algorithm AS 288: Exact Smirnov Two-Sample Tests for Arbitrary Dis-
tributions." Journal of the Royal Statistical Society. Series C (Applied Statistics), 43(1), 265–270.

Viehmann, T. (2021). Numerically more stable computation of the p-values for the two-sample
Kolmogorov-Smirnov test. arXiv preprint arXiv:2102.08037.

Dimitrina S. Dimitrova, Yun Jia, Vladimir K. Kaishev (2024). "The R functions KS2sample and
Kuiper2sample: Efficient Exact Calculation of P-values of the Two-sample Kolmogorov-Smirnov
and Kuiper Tests". submitted

Examples

## Computing the unweighted two-sample Kolmogorov-Smirnov test
## Example see in Nikiforov (1994)

m <- 120
n <- 150
kind <- 1
q <- 0.1
M <- c(80,70,40,80)
w_vec <- rep(1,m+n-1)
tol <- 1e-6
KS2sample_Rcpp(m, n, kind, M, q, w_vec, tol)

kind <- 2
KS2sample_Rcpp(m, n, kind, M, q, w_vec, tol)

## Computing the weighted two-sample Kolmogorov-Smirnov test
## with Anderson-Darling weight
kind <- 3
w_vec <- ((1:(m+n-1))*((m+n-1):1))^(-1/2)
KS2sample_Rcpp(m, n, kind, M, q, w_vec, tol)
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ks_c_cdf_Rcpp R function calling directly the C++ routines that compute the com-
plementary cumulative distribution function of the two-sided (or one-
sided, as a special case) Kolmogorov-Smirnov statistic, when the cdf
under the null hypothesis is arbitrary (i.e., purely discrete, mixed or
continuous)

Description

Function calling directly the C++ routines that compute the complementary cdf for the one-sample
two-sided Kolmogorov-Smirnov statistic, given the sample size n and the file "Boundary_Crossing_Time.txt"
in the working directory. The latter file contains Ai and Bi, i = 1, ..., n, specified in Steps 1 and
2 of the Exact-KS-FFT method (see Equation (5) in Section 2 of Dimitrova, Kaishev, Tan (2020)).
The latter values form the n-dimensional rectangular region for the uniform order statistics (see
Equations (3), (5) and (6) in Dimitrova, Kaishev, Tan (2020)), namely P (Dn ≥ q) = 1− P (Ai ≤
U(i) ≤ Bi, 1 ≤ i ≤ n) = 1 − P (g(t) ≤ nUn(t) ≤ h(t), 0 ≤ t ≤ 1), where the upper and
lower boundary functions h(t), g(t) are defined as h(t) =

∑n
i=1 1(Ai<t), g(t) =

∑n
i=1 1(Bi≤t), or

equivalently, noting that h(t) and g(t) are correspondingly left and right continuous functions, we
have sup{t ∈ [0, 1] : h(t) < i} = Ai and inf{t ∈ [0, 1] : g(t) > i− 1} = Bi.

Note that on can also compute the (complementary) cdf for the one-sided KS statistics D−
n or D+

n

(cf., Dimitrova, Kaishev, Tan (2020)) by appropriately specifying correspondingly Ai = 0 for all i
or Bi = 1 for all i, in the function ks_c_cdf_Rcpp.

Usage

ks_c_cdf_Rcpp(n)

Arguments

n the sample size

Details

Note that all calculations here are done directly in C++ and output in R. That leads to faster com-
putation time, as well as in some cases, possibly higher accuracy (depending on the accuracy of the
pre-computed values Ai and Bi, i = 1, ..., n, provided in the file "Boundary_Crossing_Time.txt")
compared to the functions cont_ks_c_cdf, disc_ks_c_cdf, mixed_ks_c_cdf.

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the two-sided Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x). The one-sided KS test statistics are correspondingly defined as D−

n = supx(F (x)− Fn(x))
and D+

n = supx(Fn(x)− F (x)).

The function ks_c_cdf_Rcpp implements the Exact-KS-FFT method, proposed by Dimitrova, Kai-
shev, Tan (2020), to compute the complementary cdf, P (Dn ≥ q) at a value q, when F (x) is
arbitrary (i.e. purely discrete, mixed or continuous). It is based on expressing the complementary
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cdf as P (Dn ≥ q) = 1− P (Ai ≤ U(i) ≤ Bi, 1 ≤ i ≤ n), where Ai and Bi are defined as in Step
1 of Dimitrova, Kaishev, Tan (2020).

The complementary cdf is then re-expressed in terms of the conditional probability that a homoge-
neous Poisson process, ξn(t) with intensity n will not cross an upper boundary h(t) and a lower
boundary g(t), given that ξn(1) = n (see Steps 2 and 3 in Section 2.1 of Dimitrova, Kaishev, Tan
(2020)). This conditional probability is evaluated using FFT in Step 4 of the method in order to
obtain the value of the complementary cdf P (Dn ≥ q). This algorithm ensures a total worst-case
run-time of order O(n2log(n)) which makes it highly computationally efficient compared to other
known algorithms developed for the special cases of continuous or purely discrete F (x).

The values Ai and Bi, i = 1, ..., n, specified in Steps 1 and 2 of the Exact-KS-FFT method (see
Dimitrova, Kaishev, Tan (2020), Section 2) must be pre-computed (in R or, if needed, using al-
ternative softwares offering high accuracy, e.g. Mathematica) and saved in a file with the name
"Boundary_Crossing_Time.txt" (in the current working directory).

The function ks_c_cdf_Rcpp is called in R and it first reads the file "Boundary_Crossing_Time.txt"
and then computes the value for the complementaty cdf P (Dn ≥ q) = 1−P (Ai ≤ U(i) ≤ Bi, 1 ≤
i ≤ n) = 1− P (g(t) ≤ nUn(t) ≤ h(t), 0 ≤ t ≤ 1) in C++ and output in R (or as noted above, as
a special case, computes the value of the complementary cdf P (D+

n ≥ q) = 1 − P (Ai ≤ U(i) ≤
1, 1 ≤ i ≤ n) or P (D−

n ≥ q) = 1− P (0 ≤ U(i) ≤ Bi, 1 ≤ i ≤ n)).

Value

Numeric value corresponding to P (Dn ≥ q) = 1−P (Ai ≤ U(i) ≤ Bi, 1 ≤ i ≤ n) = 1−P (g(t) ≤
ηn(t) ≤ h(t), 0 ≤ t ≤ 1) (or, as a special case, to P (D+

n ≥ q) or P (D−
n ≥ q)), given a sample size

n and the file "Boundary_Crossing_Time.txt" containing Ai and Bi, i = 1, ..., n, specified in Steps
1 and 2 of the Exact-KS-FFT method (see Dimitrova, Kaishev, Tan (2020), Section 2).

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Moscovich A., Nadler B. (2017). "Fast Calculation of Boundary Crossing Probabilities for Poisson
Processes". Statistics and Probability Letters, 123, 177-182.

Examples

## Computing the complementary cdf P(D_{n} >= q)
## for n = 10 and q = 0.1, when F(x) is continuous,
## In this case,
## B_i = (i-1)/n + q
## A_i = i/n - q

n <- 10
q <- 0.1
up_rec <- ((1:n)-1)/n + q
low_rec <- (1:n)/n - q
df <- data.frame(rbind(up_rec, low_rec))
write.table(df,"Boundary_Crossing_Time.txt", sep = ", ",



Kuiper2sample 27

row.names = FALSE, col.names = FALSE)
ks_c_cdf_Rcpp(n)

Kuiper2sample Computes the p-value for a two-sample Kuiper test, given arbitrary
data samples on the real line or on the circle with possibly repeated
observations (i.e. ties)

Description

Computes the p-value, P (Vm,n ≥ q), where Vm,n is the two-sample Kuiper test statistic, q = v,
i.e. the observed value of the Kuiper statistic, computed based on two data samples {x1, ..., xm}
and {y1, ..., yn} that may come from continuous, discrete or mixed distribution, i.e. they may have
repeated observations (ties).

Usage

Kuiper2sample(x, y, conservative = F, tail = T)

Arguments

x a numeric vector of data sample values {x1, ..., xm}
y a numeric vector of data sample values {y1, ..., yn}
conservative logical variable indicating whether ties should be considered. See ‘Details’ for

the meaning.

tail logical variable indicating whether a p-value, P (Vm,n ≥ q) or one minus the p-
value, P (Vm,n < q), should be computed. By default, the p-value P (Vm,n ≥ q)
is computed. See ‘Details’ for the meaning.

Details

Given a pair of random samples, either on the real line or the circle, denoted by Xm = (X1, ..., Xm)
and Yn = (Y1, ..., Yn), of sizes m and n with empirical cdfs Fm(t) and Gn(t) respectively, coming
from some unknown cdfs F (x) and G(x). It is assumed that F (x) and G(x) could be either contin-
uous, discrete or mixed, which means that repeated observations are allowed in the corresponding
observed samples. The task is to test the null hypothesis H0 : F (x) = G(x) for all x, against the
alternative hypothesis H1 : F (x) ̸= G(x) for at least one x. The two-sample Kuiper goodness-of-fit
statistic that is used to test this hypothesis is defined as:

ςm,n = sup[Fm(t)−Gn(t)]− inf[Fm(t)−Gn(t)].

For a particular realization of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), let there be k
distinct values, a1 < a2 < ... < ak, in the ordered, pooled sample (z1 ≤ z2 ≤ . . . ≤ zm+n), where
k ≤ m + n, and where mi is the number of times ai, i = 1, . . . , k appears in the pooled sample.
The p-value is then defined as the probability

p = P (Vm,n ≥ q) ,
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where Vm,n is the two-sample Kuiper test statistic defined as ςm,n, for two samples X ′
m and Y ′

n of
sizes m and n, randomly drawn from the pooled sample without replacement and q = v, the observed
value of the statistic calculated based on the user provided data samples x and y. By default tail =
T, the p-value is returned, otherwise 1− p is returned.

Note that, Vm,n is defined on the space Ω of all possible pairs, C = (m+n)!
m!n! of edfs Fm(x, ω)

and Gn(x, ω), ω ∈ Ω, that correspond to the pairs of samples X ′
m and Y ′

n, randomly drawn from,
Zm+n, as follows. First, m observations are drawn at random without replacement, forming the first
sample X ′

m, with corresponding edf, Fm(x, ω). The remaining n observations are then assigned to
the second sample Y ′

n, with corresponding edf Gn(x, ω). Observations are then replaced back in
Zm+n and re-sampling is continued until the occurrence of all the C possible pairs of edfs Fm(x, ω)
and Gn(x, ω), ω ∈ Ω. The pairs of edf’s may be coincident if there are ties in the data and each
pair, Fm(x, ω) and Gn(x, ω) occurs with probability 1/C.

conservative is a logical variable whether the test should be conducted conservatively. By de-
fault, conservative = F, Kuiper2sample returns the p-value that is defined through the conditional
probability above. However, when the user has a priori knowledge that both samples are from a
continuous distribution even if ties are present, for example, repeated observations are caused by
rounding errors, the value conservative = T should be assigned, since the conditional probability
is no longer relevant. In this case, Kuiper2sample computes p-values for the Kuiper test assuming
no ties are present, and returns a p-value which is an upper bound of the true p-value. Note that,
if the null hypothesis is rejected using the calculated upper bound for the p-value, it should also be
rejected with the true p-value.

Kuiper2sample calculates the exact p-value of the Kuiper test using an algorithm from Dimitrova,
Jia, Kaishev (2024), which is based on extending the algorithm provided by Nikiforov (1994) and
generalizing the method due to Maag and Stephens (1968) and Hirakawa (1973). If tail = F,
Kuiper2sample calculates the complementary p-value 1 − p. For the purpose, an exact algorithm
which generalizes the method due to Nikiforov (1994) is implemented. Alternatively, if tail =
T, a version of the Nikiforov’s recurrence proposed recently by Viehmann (2021) is further incor-
porated, which computes directly the p-value, with up to 4 digits extra accuracy, but at up to 3
times higher computational cost. It is accurate and valid for arbitrary (possibly large) sample sizes.
This algorithm ensures a total worst-case run-time of order O((mn)2). When m and n have large
greatest common divisor (an extreme case is m = n), it ensures a total worst-case run-time of order
O((m)2n).

Kuiper2sample is accurate and fast compared with the function based on the Monte Carlo sim-
ulation. Compared to the implementation using asymptotic method, Kuiper2sample allows data
samples to come from continuous, discrete or mixed distribution (i.e. ties may appear), and is more
accurate than asymptotic method when sample sizes are small.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic v.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

data.name a character string giving names of the data.
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Examples

##Computes discrete circular data
data1 <- c(rep(pi/2,30),rep(pi,30),rep(3*pi/2,30),rep(2*pi,30))
data2 <- c(rep(pi/2,50),rep(pi,40),rep(3*pi/2,10),rep(2*pi,50))
Kuiper2sample(data1, data2)

##The calculated p-value does not change with the choice of the original point
data3 <- c(rep(pi/2,30),rep(pi,30),rep(3*pi/2,30),rep(2*pi,30))
data4 <- c(rep(pi/2,50),rep(pi,50),rep(3*pi/2,40),rep(2*pi,10))
Kuiper2sample(data3, data4)

Kuiper2sample_c_Rcpp R function calling the C++ routines that compute the complementary
p-value for a (unweighted) two-sample Kuiper test, given arbitrary
data samples on the real line or on the circle with possibly repeated
observations (i.e. ties)

Description

Function calling directly the C++ routines that compute the exact complementary p-value P (Vm,n <
q) for the two-sample Kuiper test, at a fixed q, q ∈ [0, 2], given the sample sizes m, n and the vector
M containing the number of times each distinct observation is repeated in the pooled sample.

Usage

Kuiper2sample_c_Rcpp(m, n, M, q)

Arguments

m the sample size of first tested sample.

n the sample size of second tested sample.
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M an integer-valued vector with k cells, where k denotes the number of distinct
values in the ordered pooled sample of tested pair of samples(i.e. a1 < a2 <
. . . < ak). M[i] is the number of times that ai is repeated in the pooled sample.
A valid M must have strictly positive integer values and have the sum of all cells
equals to m+n.

q numeric value between 0 and 2, at which the p-value P (Vm,n < q) is computed.

Details

Given a pair of random samples, either on the real line or the circle, denoted by Xm = (X1, ..., Xm)
and Yn = (Y1, ..., Yn), of sizes m and n with empirical cdfs Fm(t) and Gn(t) respectively, coming
from some unknown cdfs F (x) and G(x). It is assumed that F (x) and G(x) could be either contin-
uous, discrete or mixed, which means that repeated observations are allowed in the corresponding
observed samples. The task is to test the null hypothesis H0 : F (x) = G(x) for all x, against the
alternative hypothesis H1 : F (x) ̸= G(x) for at least one x. The two-sample Kuiper goodness-of-fit
statistic that is used to test this hypothesis is defined as:

ςm,n = sup[Fm(t)−Gn(t)]− inf[Fm(t)−Gn(t)].

The numeric array M specifies the number of repeated observations in the pooled sample. For a
particular realization of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), let there be k distinct
values, a1 < a2 < ... < ak, in the ordered, pooled sample (z1 ≤ z2 ≤ . . . ≤ zm+n), where
k ≤ m + n, and where mi = M[i] is the number of times ai, i = 1, . . . , k appears in the pooled
sample. The calculated complementary p-value is then the conditional probability:

P (Vm,n < q)

where Vm,n is the two-sample Kuiper test statistic defined as ςm,n, for two samples X ′
m and Y ′

n of
sizes m and n, randomly drawn from the pooled sample without replacement, i.e. Vm,n is defined
on the space Ω (see further details in Kuiper2sample), and q ∈ [0, 2].

Kuiper2sample_c_Rcpp implements an algorithm from Dimitrova, Jia, Kaishev (2024), that is
based on extending the algorithm provided by Nikiforov (1994) and generalizing the method due
to Maag and Stephens (1968) and Hirakawa (1973). It is relatively accurate (less accurate than
Kuiper2sample_Rcpp) and valid for arbitrary (possibly large) sample sizes. This algorithm ensures
a total worst-case run-time of order O((mn)2). When m and n have large greatest common divisor
(an extreme case is m = n), it ensures a total worst-case run-time of order O((m)2n).

Other known implementations for the two-sample Kuiper test mainly use the approximation method
or Monte Carlo simulation (See also Kuiper2sample). The former method is invalid for data with
ties and often gives p-values with large errors when sample sizes are small, the latter method is
usually slow and inaccurate. Compared with other known algorithms, Kuiper2sample_c_Rcpp
allows data samples to come from continuous, discrete or mixed distribution (i.e. ties may appear),
and is more accurate and generally applicable for large sample sizes.

Value

Numeric value corresponding to P (Vm,n < q), given sample sizes m, n and M. If the value of m, n
are non-positive, or their least common multiple exceeds the limit 2147483647, then the function
returns -1, the non-permitted value of M returns -2, numerically unstable calculation returns -3.
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Examples

## Computing the unweighted two-sample Kolmogorov-Smirnov test
## Example see in Nikiforov (1994)

m <- 120
n <- 150
q <- 0.183333333
M <- c(80,70,40,80)
Kuiper2sample_c_Rcpp(m, n, M, q)

Kuiper2sample_Rcpp R function calling the C++ routines that compute the p-value for a
(unweighted) two-sample Kuiper test, given arbitrary data samples on
the real line or on the circle with possibly repeated observations (i.e.
ties)

Description

Function calling directly the C++ routines that compute the exact p-value P (Vm,n ≥ q) for the two-
sample Kuiper test, at a fixed q, q ∈ [0, 2], given the sample sizes m, n and the vector M containing
the number of times each distinct observation is repeated in the pooled sample.

Usage

Kuiper2sample_Rcpp(m, n, M, q)

Arguments

m the sample size of first tested sample.
n the sample size of second tested sample.
M an integer-valued vector with k cells, where k denotes the number of distinct

values in the ordered pooled sample of tested pair of samples(i.e. a1 < a2 <
. . . < ak). M[i] is the number of times that ai is repeated in the pooled sample.
A valid M must have strictly positive integer values and have the sum of all cells
equals to m+n.

q numeric value between 0 and 2, at which the p-value P (Vm,n ≥ q) is computed.
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Details

Given a pair of random samples, either on the real line or the circle, denoted by Xm = (X1, ..., Xm)
and Yn = (Y1, ..., Yn), of sizes m and n with empirical cdfs Fm(t) and Gn(t) respectively, coming
from some unknown cdfs F (x) and G(x). It is assumed that F (x) and G(x) could be either contin-
uous, discrete or mixed, which means that repeated observations are allowed in the corresponding
observed samples. The task is to test the null hypothesis H0 : F (x) = G(x) for all x, against the
alternative hypothesis H1 : F (x) ̸= G(x) for at least one x. The two-sample Kuiper goodness-of-fit
statistic that is used to test this hypothesis is defined as:

ςm,n = sup[Fm(t)−Gn(t)]− inf[Fm(t)−Gn(t)].

The numeric array M specifies the number of repeated observations in the pooled sample. For a
particular realization of the pooled sample Zm,n = (X1, ..., Xm, Y1, ..., Yn), let there be k distinct
values, a1 < a2 < ... < ak, in the ordered, pooled sample (z1 ≤ z2 ≤ . . . ≤ zm+n), where
k ≤ m + n, and where mi = M[i] is the number of times ai, i = 1, . . . , k appears in the pooled
sample. The p-value is then defined as the probability

P (Vm,n ≥ q) ,

where Vm,n is the two-sample Kuiper test statistic defined as ςm,n, for two samples X ′
m and Y ′

n of
sizes m and n, randomly drawn from the pooled sample without replacement, i.e. Vm,n is defined
on the space Ω (see further details in Kuiper2sample), and q ∈ [0, 2].

Kuiper2sample_Rcpp implements an algorithm from Dimitrova, Jia, Kaishev (2024), that is based
on extending the algorithm provided by Nikiforov (1994) and generalizing the method due to Maag
and Stephens (1968) and Hirakawa (1973). A version of the Nikiforov’s recurrence proposed re-
cently by Viehmann (2021) is further incorporated, which computes directly the p-value, with up to
4 digits extra accuracy, but at up to 3 times higher computational cost than Kuiper2sample_c_Rcpp.
It is accurate and valid for arbitrary (possibly large) sample sizes. This algorithm ensures a total
worst-case run-time of order O((mn)2). When m and n have large greatest common divisor (an
extreme case is m = n), it ensures a total worst-case run-time of order O((m)2n).

Other known implementations for the two-sample Kuiper test mainly use the approximation method
or Monte Carlo simulation (See also Kuiper2sample). The former method is invalid for data with
ties and often gives p-values with large errors when sample sizes are small, the latter method is
usually slow and inaccurate. Compared with other known algorithms, Kuiper2sample_Rcpp allows
data samples to come from continuous, discrete or mixed distribution (i.e. ties may appear), and is
more accurate and generally applicable for large sample sizes.

Value

Numeric value corresponding to P (Vm,n ≥ q), given sample sizes m, n and M. If the value of m, n
are non-positive, or their least common multiple exceeds the limit 2147483647, then the function
returns -1, the non-permitted value of M returns -2, numerically unstable calculation returns -3.
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Examples

## Computing the unweighted two-sample Kolmogorov-Smirnov test
## Example see in Nikiforov (1994)

m <- 120
n <- 150
q <- 0.183333333
M <- c(80,70,40,80)
Kuiper2sample_Rcpp(m, n, M, q)

mixed_ks_c_cdf Computes the complementary cumulative distribution function of the
two-sided Kolmogorov-Smirnov statistic when the cdf under the null
hypothesis is mixed

Description

Computes the complementary cdf, P (Dn ≥ q) at a fixed q, q ∈ [0, 1], of the one-sample two-
sided Kolmogorov-Smirnov statistic, when the cdf F (x) under the null hypothesis is mixed, using
the Exact-KS-FFT method expressing the p-value as a double-boundary non-crossing probability
for a homogeneous Poisson process, which is then efficiently computed using FFT (see Dimitrova,
Kaishev, Tan (2020)).

Usage

mixed_ks_c_cdf(q, n, jump_points, Mixed_dist, ..., tol = 1e-10)

Arguments

q numeric value between 0 and 1, at which the complementary cdf P (Dn ≥ q) is
computed

n the sample size

jump_points a numeric vector containing the points of (jump) discontinuity, i.e. where the
underlying cdf F (x) has jump(s)

Mixed_dist a pre-specified (user-defined) mixed cdf, F (x), under the null hypothesis.

... values of the parameters of the cdf, F (x) specified (as a character string) by
Mixed_dist.
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tol the value of ϵ that is used to compute the values of Ai and Bi, i = 1, ..., n, as
detailed in Step 1 of Section 2.1 in Dimitrova, Kaishev and Tan (2020) (see also
(ii) in the Procedure Exact-KS-FFT therein). By default, tol = 1e-10. Note that
a value of NA or 0 will lead to an error!

Details

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x).

The function mixed_ks_c_cdf implements the Exact-KS-FFT method, proposed by Dimitrova,
Kaishev, Tan (2020) to compute the complementary cdf P (Dn ≥ q) at a value q, when F (x) is
mixed. This algorithm ensures a total worst-case run-time of order O(n2log(n)).

We have not been able to identify alternative, fast and accurate, method (software) that has been
developed/implemented when the hypothesized F (x) is mixed.

Value

Numeric value corresponding to P (Dn ≥ q).

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Examples

# Compute the complementary cdf of D_{n}
# when the underlying distribution is a mixed distribution
# with two jumps at 0 and log(2.5),
# as in Example 3.1 of Dimitrova, Kaishev, Tan (2020)

## Defining the mixed distribution

Mixed_cdf_example <- function(x)
{

result <- 0
if (x < 0){

result <- 0
}
else if (x == 0){

result <- 0.5
}
else if (x < log(2.5)){

result <- 1 - 0.5 * exp(-x)
}
else{

result <- 1
}
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return (result)
}

KSgeneral::mixed_ks_c_cdf(0.1, 25, c(0, log(2.5)), Mixed_cdf_example)

## Not run:
## Compute P(D_{n} >= q) for n = 5,
## q = 1/5000, 2/5000, ..., 5000/5000
## when the underlying distribution is a mixed distribution
## with four jumps at 0, 0.2, 0.8, 1.0,
## as in Example 2.8 of Dimitrova, Kaishev, Tan (2020)

n <- 5
q <- 1:5000/5000

Mixed_cdf_example <- function(x)
{

result <- 0
if (x < 0){
result <- 0

}
else if (x == 0){

result <- 0.2
}
else if (x < 0.2){

result <- 0.2 + x
}
else if (x < 0.8){

result <- 0.5
}
else if (x < 1){

result <- x - 0.1
}
else{

result <- 1
}

return (result)
}

plot(q, sapply(q, function(x) KSgeneral::mixed_ks_c_cdf(x, n,
c(0, 0.2, 0.8, 1.0), Mixed_cdf_example)), type='l')

## End(Not run)
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mixed_ks_test Computes the p-value for a one-sample two-sided Kolmogorov-
Smirnov test when the cdf under the null hypothesis is mixed

Description

Computes the p-value P (Dn ≥ dn), where dn is the value of the KS test statistic computed based
on a data sample {x1, ..., xn}, when F (x) is mixed, using the Exact-KS-FFT method expressing the
p-value as a double-boundary non-crossing probability for a homogeneous Poisson process, which
is then efficiently computed using FFT (see Dimitrova, Kaishev, Tan (2020)).

Usage

mixed_ks_test(x, jump_points, Mixed_dist, ..., tol = 1e-10)

Arguments

x a numeric vector of data sample values {x1, ..., xn}.

jump_points a numeric vector containing the points of (jump) discontinuity, i.e. where the
underlying cdf F (x) has jump(s)

Mixed_dist a pre-specified (user-defined) mixed cdf, F (x), under the null hypothesis.

... values of the parameters of the cdf, F (x) specified (as a character string) by
Mixed_dist.

tol the value of ϵ that is used to compute the values of Ai and Bi, i = 1, ..., n, as
detailed in Step 1 of Section 2.1 in Dimitrova, Kaishev and Tan (2020) (see also
(ii) in the Procedure Exact-KS-FFT therein). By default, tol = 1e-10. Note that
a value of NA or 0 will lead to an error!

Details

Given a random sample {X1, ..., Xn} of size n with an empirical cdf Fn(x), the Kolmogorov-
Smirnov goodness-of-fit statistic is defined as Dn = sup |Fn(x)− F (x)|, where F (x) is the cdf of
a prespecified theoretical distribution under the null hypothesis H0, that {X1, ..., Xn} comes from
F (x).

The function mixed_ks_test implements the Exact-KS-FFT method expressing the p-value as a
double-boundary non-crossing probability for a homogeneous Poisson process, which is then effi-
ciently computed using FFT (see Dimitrova, Kaishev, Tan (2020)). This algorithm ensures a total
worst-case run-time of order O(n2log(n)).

The function mixed_ks_test computes the p-value P (Dn ≥ dn), where dn is the value of the KS
test statistic computed based on a user-provided data sample {x1, ..., xn}, when F (x) is mixed,

We have not been able to identify alternative, fast and accurate, method (software) that has been
developed/implemented when the hypothesized F (x) is mixed.
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Value

A list with class "htest" containing the following components:

statistic the value of the statistic.

p.value the p-value of the test.

alternative "two-sided".

data.name a character string giving the name of the data.

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

Examples

# Example to compute the p-value of the one-sample two-sided KS test,
# when the underlying distribution is a mixed distribution
# with two jumps at 0 and log(2.5),
# as in Example 3.1 of Dimitrova, Kaishev, Tan (2020)

# Defining the mixed distribution

Mixed_cdf_example <- function(x)
{

result <- 0
if (x < 0){

result <- 0
}
else if (x == 0){

result <- 0.5
}
else if (x < log(2.5)){

result <- 1 - 0.5 * exp(-x)
}
else{

result <- 1
}

return (result)
}
test_data <- c(0,0,0,0,0,0,0.1,0.2,0.3,0.4,

0.5,0.6,0.7,0.8,log(2.5),log(2.5),
log(2.5),log(2.5),log(2.5),log(2.5))

KSgeneral::mixed_ks_test(test_data, c(0, log(2.5)),
Mixed_cdf_example)

## Compute the p-value of a two-sided K-S test
## when F(x) follows a zero-and-one-inflated
## beta distribution, as in Example 3.3
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## of Dimitrova, Kaishev, Tan (2020)

## The data set is the proportion of inhabitants
## living within a 200 kilometer wide costal strip
## in 232 countries in the year 2010

data("Population_Data")
mu <- 0.6189
phi <- 0.6615
a <- mu * phi
b <- (1 - mu) * phi

Mixed_cdf_example <- function(x)
{

result <- 0
if (x < 0){

result <- 0
}
else if (x == 0){

result <- 0.1141
}
else if (x < 1){

result <- 0.1141 + 0.4795 * pbeta(x, a, b)
}
else{

result <- 1
}

return (result)
}
KSgeneral::mixed_ks_test(Population_Data, c(0, 1), Mixed_cdf_example)

Population_Data The proportion of inhabitants living within a 200 kilometer wide costal
strip in 232 countries in the year 2010

Description

This data set contains the proportion of inhabitants living within a 200 kilometer wide costal strip
in 232 countries in the year 2010. In Example 3.3 of Dimitrova, Kaishev, Tan (2020), the data set
is modelled using a zero-and-one-inflated beta distribution in the null hypothesis and a one-sample
two-sided Kolmogorov-Smirnov test is performed to test whether the proposed distribution fits the
data well enough.

Usage

data("Population_Data")
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Format

A data frame with 232 observations on the proportion of inhabitants living within a 200 kilometer
wide costal strip in 2010.

Source

https://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3

References

Dimitrina S. Dimitrova, Vladimir K. Kaishev, Senren Tan. (2020) "Computing the Kolmogorov-
Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed or Continuous". Journal
of Statistical Software, 95(10): 1-42. doi:10.18637/jss.v095.i10.

https://sedac.ciesin.columbia.edu/data/set/nagdc-population-landscape-climate-estimates-v3
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