Package ‘BRISC’

March 9, 2021

Type Package
Title Fast Inference for Large Spatial Datasets using BRISC
Version 1.0.1
Maintainer Arkajyoti Saha <arkajyotisaha93@gmail.com>
Author Arkajyoti Saha [aut, cre],
 Abhirup Datta [aut],
 Jorge Nocedal [ctb],
 Naoaki Okazaki [ctb]
Depends R (>= 3.3.0), RANN, parallel, stats, rdist, matrixStats,
 pbapply, graphics
License GPL (>= 2)
URL https://github.com/ArkajyotiSaha/BRISC
BugReports https://github.com/ArkajyotiSaha/BRISC/issues
Encoding UTF-8
NeedsCompilation yes
RoxygenNote 6.1.1
Repository CRAN
Date/Publication 2021-03-09 21:30:02 UTC

R topics documented:

BRISC_bootstrap ... 2
BRISC_correlation .. 4
BRISC_decorrelation .. 6
BRISC_estimation .. 9
BRISC_prediction ... 12
BRISC_simulation .. 14
BRISC_variogram.ci .. 16
BRISC_bootstrap

Function for performing bootstrap with BRISC

Description

The function `BRISC_bootstrap` performs bootstrap to provide confidence intervals for parameters of univariate spatial regression models using outputs of `BRISC_estimation`. The details of the bootstrap method can be found in BRISC (Saha & Datta, 2018). The optimization is performed with C library of limited-memory BFGS `libLBFGS`: a library of Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), http://www.chokkan.org/software/liblbfgs/ (Naoaki Okazaki). For user convenience, the source codes of the package `libLBFGS` are provided in the package. Some code blocks are borrowed from the R package: spNNGP: Spatial Regression Models for Large Datasets using Nearest Neighbor Gaussian Processes https://CRAN.R-project.org/package=spNNGP.

Usage

```r
BRISC_bootstrap(BRISC_Out, n_boot = 100, h = 1, n_omp = 1, 
init = "Initial", verbose = TRUE, 
nugget_status = 1)
```

Arguments

- `BRISC_Out`: an object of class `BRISC_Out`, obtained as an output of `BRISC_estimation`.
- `n_boot`: number of bootstrap samples. Default value is 100.
- `h`: number of core to be used in parallel computing setup for bootstrap samples. If `h = 1`, there is no parallelization. Default value is 1.
- `n_omp`: number of threads to be used, value can be more than 1 if source code is compiled with OpenMP support. Default is 1.
- `init`: keyword that specifies initialization scheme to be used. Supported keywords are: "Initial" and "Estimate" for initialization of parameter values for bootstrap samples with initial values used in `BRISC_estimate` and estimated values of parameters in `BRISC_estimate` respectively.
- `verbose`: if TRUE, model specifications along with information regarding OpenMP support and progress of the algorithm is printed to the screen. Otherwise, nothing is printed to the screen. Default value is TRUE.
- `nugget_status`: if `nugget_status = 0`, `tau.sq` is fixed to 0, if `nugget_status = 1` `tau.sq` is estimated. Default value is 1.
Value

A list comprising of the following:

- `boot.Theta` estimates of spatial covariance parameters corresponding to bootstrap samples.
- `boot.Beta` estimates of beta corresponding to bootstrap samples.
- `confidence.interval` confidence intervals corresponding to the parameters.
- `boot.time` time (in seconds) required to perform the bootstrapping after preprocessing data in R, reported using `proc.time()`.

Author(s)

Arkajyoti Saha <arkajyotisaha93@gmail.com>, Abhirup Datta <abhidatta@jhu.edu>

References

Examples

```r
rmvn <- function(n, mu = 0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension not right!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)
N <- 300
coords <- cbind(runif(n,0,1), runif(n,0,1))

beta <- c(1,5)
x <- cbind(rnorm(n), rnorm(n))

sigma.sq = 1
phi = 5
tau.sq = 0.1

B <- as.matrix(beta)
D <- as.matrix(dist(coords))
```
BRISC_correlation

Function for create correlated data with BRISC

Description

The function BRISC_correlation creates correlated data (known structure) using Nearest Neighbor Gaussian Processes (NNGP). BRISC_correlation uses the sparse Cholesky representation of Vecchia's likelihood developed in Datta et al., 2016. Some code blocks are borrowed from the R package: spNNGP: Spatial Regression Models for Large Datasets using Nearest Neighbor Gaussian Processes https://CRAN.R-project.org/package=spNNGP.

Usage

BRISC_correlation(coords, sim, sigma.sq = 1, tau.sq = 0, phi = 1, nu = 1.5, n.neighbors = NULL, n_omp = 1, cov.model = "exponential", search.type = "tree", stabilization = NULL, verbose = TRUE, tol = 12)

Arguments

coords an n × 2 matrix of the observation coordinates in \(R^2\) (e.g., easting and northing).
sim an n × k matrix of the k many n × 1 vectors from which the correlated data are calculated (see Details below).
sigma.sq value of sigma square. Default value is 1.
tau.sq value of tau square. Default value is 0.1.
phi value of phi. Default value is 1.
nu value of nu, only required for matern covariance model. Default value is 1.5.
n.neighbors number of neighbors used in the NNGP. Default value is \(\max(100, n - 1)\). We suggest a high value of n.neighbors for lower value of phi.
n_omp number of threads to be used, value can be more than 1 if source code is compiled with OpenMP support. Default is 1.
cov.model keyword that specifies the covariance function to be used in modelling the spatial dependence structure among the observations. Supported keywords are: "exponential", "matern", "spherical", and "gaussian" for exponential, Matern, spherical and Gaussian covariance function respectively. Default value is "exponential".
search.type

keyword that specifies type of nearest neighbor search algorithm to be used. Supported keywords are: "brute", "tree" and "cb". "brute" and "tree" provide the same result, though "tree" should be faster. "cb" implements fast code book search described in Ra and Kim (1993) modified for NNGP. If locations do not have identical coordinate values on the axis used for the nearest neighbor ordering (see order argument) then "cb" and "brute" should produce identical neighbor sets. However, if there are identical coordinate values on the axis used for nearest neighbor ordering, then "cb" and "brute" might produce different, but equally valid, neighbor sets, e.g., if data are on a grid. Default value is "tree".

stabilization

when we use a very smooth covariance model (lower values of phi for spherical and Gaussian covariance and low phi and high nu for Matern covariance) in absence of a non-negligible nugget, the correlation process may fail due to computational instability. If stabilization = TRUE, performs stabilization by setting tau.sq = max(tau.sq, sigma.sq * 1e-06). Default value is TRUE for cov.model = "exponential" and FALSE otherwise.

verbose

if TRUE, model specifications along with information regarding OpenMP support and progress of the algorithm is printed to the screen. Otherwise, nothing is printed to the screen. Default value is TRUE.

tol

the input observation coordinates are rounded to this many places after the decimal. The default value is 12.

Details

Denote g be the input sim. Let Σ be the precision matrix associated with the covariance model determined by the cov.model and model parameters. Then BRISC_correlation calculates h, where h is given as follows:

$$S^{-0.5}h = g$$

where, $S^{-0.5}$ is a sparse approximation of the cholesky factor $\Sigma^{-0.5}$ of the precision matrix Σ^{-1}, obtained from NNGP.

Value

A list comprising of the following:

- coords the matrix $coords$.
- n.neighbors the used value of n.neighbors.
- cov.model the used covariance model.
- Theta the parameters of covarinace model; accounts for stabilization.
- input.data the matrix sim.
- output.data the output matrix h in Details.
- time time (in seconds) required after preprocessing data in R, reported using, proc.time().
Author(s)

Arkajyoti Saha <arkajyotisaha93@gmail.com>,
Abhirup Datta <abhidatta@jhu.edu>

References

Examples

```r
set.seed(1)
n <- 1000
coords <- cbind(runif(n,0,1), runif(n,0,1))

sigma.sq = 1
phi = 1

set.seed(1)
sim <- matrix(rnorm(3*n),n, 3)
correlation_result <- BRISC_correlation(coords, sigma.sq = sigma.sq, phi = phi, sim = sim)
```

BRISC_decorrelation

Function to decorrelate data with BRISC

Description

The function BRISC_decorrelation is used to decorrelate data (known structure) using Nearest Neighbor Gaussian Processes (NNGP). BRISC_decorrelation uses the sparse Cholesky representation of Vecchia’s likelihood developed in Datta et al., 2016. Some code blocks are borrowed from the R package: spNNGP: Spatial Regression Models for Large Datasets using Nearest Neighbor Gaussian Processes https://CRAN.R-project.org/package=spNNGP.

Usage

```r
BRISC_decorrelation(coords, sim, sigma.sq = 1, tau.sq = 0, phi = 1, nu = 1.5, n.neighbors = NULL, n_omp = 1, cov.model = "exponential", search.type = "tree", stabilization = NULL, verbose = TRUE, tol = 12)
```
Arguments

- **coords**
 - An $n \times 2$ matrix of the observation coordinates in R^2 (e.g., easting and northing).

- **sim**
 - An $n \times k$ matrix of the k many $n \times 1$ vectors from which the decorrelated data are calculated (see Details below).

- **sigma.sq**
 - Value of sigma square. Default value is 1.

- **tau.sq**
 - Value of tau square. Default value is 0.1.

- **phi**
 - Value of phi. Default value is 1.

- **nu**
 - Value of nu, only required for Matern covariance model. Default value is 1.5.

- **n.neighbors**
 - Number of neighbors used in the NNGP. Default value is $max(100, n − 1)$. We suggest a high value of n.neighbors for lower value of phi.

- **n_omp**
 - Number of threads to be used, value can be more than 1 if source code is compiled with OpenMP support. Default is 1.

- **cov.model**
 - Keyword that specifies the covariance function to be used in modelling the spatial dependence structure among the observations. Supported keywords are: "exponential", "matern", "spherical", and "gaussian" for exponential, Matern, spherical and Gaussian covariance function respectively. Default value is "exponential".

- **search.type**
 - Keyword that specifies type of nearest neighbor search algorithm to be used. Supported keywords are: "brute", "tree" and "cb". "brute" and "tree" provide the same result, though "tree" should be faster. "cb" implements fast code book search described in Ra and Kim (1993) modified for NNGP. If locations do not have identical coordinate values on the axis used for the nearest neighbor ordering (see order argument) then "cb" and "brute" should produce identical neighbor sets. However, if there are identical coordinate values on the axis used for nearest neighbor ordering, then "cb" and "brute" might produce different, but equally valid, neighbor sets, e.g., if data are on a grid. Default value is "tree".

- **stabilization**
 - When the correlated data are generated from a very smooth covariance model (lower values of phi for spherical and Gaussian covariance and low phi and high nu for Matern covariance), the decorrelation process may fail due to computational instability. If stabilization = TRUE, performs stabilization by adding a white noise to the data with nugget tau.sq = sigma.sq * 1e-06. Default value is TRUE for cov.model = "exponential" and FALSE otherwise.

- **verbose**
 - If TRUE, model specifications along with information regarding OpenMP support and progress of the algorithm is printed to the screen. Otherwise, nothing is printed to the screen. Default value is TRUE.

- **tol**
 - The input observation coordinates are rounded to this many places after the decimal. The default value is 12.

Details

Denote h be the input sim. Let Σ be the covariance matrix associated with the covariance model determined by the cov.model and model parameters. Then BRISC_decorrelation calculates g, where g is given as follows:

$$S^{-0.5}h = g$$
where, $S^{-0.5}$ is a sparse approximation of the cholesky factor $\Sigma^{-0.5}$ of the precision matrix Σ^{-1}, obtained from NNGP.

Value

A list comprising of the following:

- `coords` the matrix coords.
- `n.neighbors` the used value of `n.neighbors`.
- `cov.model` the used covariance model.
- `Theta` parameters of covarinace model; accounts for stabilization.
- `input.data` if `stabilization = FALSE`, return the matrix sim. If `stabilization = TRUE`, returns sim + used white noise in stabilization process.
- `output.data` the output matrix g in Details.
- `time` time (in seconds) required after preprocessing data in R, reported using, `proc.time()`.

Author(s)

Arkajyoti Saha <arkajyotisaha93@gmail.com>,
Abhirup Datta <abhidatta@jhu.edu>

References

Examples

```r
rmvn <- function(n, mu = 0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension not right!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)
n <- 1000
coords <- cbind(runif(n,0,1), runif(n,0,1))
sigma.sq = 1
phi = 1

set.seed(1)
```
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
sim <- rmvn(3, rep(0,n), sigma.sq*R)
decorrelation_result <- BRISC_decorrelation(coords, sim = sim)

BRISC_estimation
Function for estimation with BRISC

Description

The function `BRISC_estimation` fits univariate spatial regression models for large spatial data using Vecchia’s approximate likelihood (Vecchia, 1988). `BRISC_estimation` uses the sparse Cholesky representation of Vecchia’s likelihood developed in Datta et al., 2016. The Maximum Likelihood Estimates (MLE) of the parameters are used later for calculating the confidence interval via the `BRISC_bootstrap` (BRISC, Saha & Datta, 2018).

We recommend using `BRISC_estimation` followed by `BRISC_bootstrap` to obtain the confidence intervals for the model parameters.

The optimization is performed with C library of limited-memory BFGS libLBFGS: a library of Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), http://www.chokkan.org/software/liblbfgs/ (Naoaki Okazaki). For user convenience the source codes of the package libLBFGS are provided in the package. The code for the coordinate ordering method, approximate Maximum Minimum Distance (Guinness, 2018) is available in https://github.com/joeguinness/gp_reorder/tree/master/R and is adopted with minor modification. Some code blocks are borrowed from the R package: spNNGP: Spatial Regression Models for Large Datasets using Nearest Neighbor Gaussian Processes https://CRAN.R-project.org/package=spNNGP.

Usage

```r
BRISC_estimation(coords, y, x = NULL, sigma.sq = 1,
    tau.sq = 0.1, phi = 1,
    nu = 1.5, n.neighbors = 15,
    n_omp = 1, order = "Sum_coords",
    cov.model = "exponential",
    search.type = "tree",
    stabilization = NULL,
    pred.stabilization = 1e-8,
    verbose = TRUE, eps = 2e-05,
    nugget_status = 1, tol = 12)
```

Arguments

- **coords**
an $n \times 2$ matrix of the observation coordinates in \mathbb{R}^2 (e.g., easting and northing).
- **y**
an n length vector of response at the observed coordinates.
- **x**
an $n \times p$ matrix of the covariates in the observation coordinates. Default value is $n \times 1$ matrix of 1 to adjust for the mean(intercept).
sigma.sq starting value of sigma square. Default value is 1.

tau.sq starting value of tau square. Default value is 0.1.

phi starting value of phi. Default value is 1.

nu starting value of nu, only required for matern covariance model. Default value is 1.5.

n.neighbors number of neighbors used in the NNGP. Default value is 15.

n_omp number of threads to be used, value can be more than 1 if source code is compiled with OpenMP support. Default is 1.

order keyword that specifies the ordering scheme to be used in ordering the observations. Supported keywords are: "AMMD" and "Sum_coords" for approximate Maximum Minimum Distance and sum of coordinate based ordering, respectively. Default value is "Sum_coords". n > 65 is required for "AMMD".

cov.model keyword that specifies the covariance function to be used in modelling the spatial dependence structure among the observations. Supported keywords are: "exponential", "matern", "spherical", and "gaussian" for exponential, Matern, spherical and Gaussian covariance function respectively. Default value is "exponential".

search.type keyword that specifies type of nearest neighbor search algorithm to be used. Supported keywords are: "brute", "tree" and "cb". "brute" and "tree" provide the same result, though "tree" should be faster. "cb" implements fast code book search described in Ra and Kim (1993) modified for NNGP. If locations do not have identical coordinate values on the axis used for the nearest neighbor ordering (see order argument) then "cb" and "brute" should produce identical neighbor sets. However, if there are identical coordinate values on the axis used for nearest neighbor ordering, then "cb" and "brute" might produce different, but equally valid, neighbor sets, e.g., if data are on a grid. Default value is "tree".

stabilization when the spatial errors are generated from a very smooth covariance model (lower values of phi for spherical and Gaussian covariance and low phi and high nu for Matern covariance), the estimation process may fail due to computational instability. If stabilization = TRUE, performs stabilization by adding a white noise to the reordered data with nugget tau. sq = sigma.sq * 1e-06. Estimation is performed on this new data with nugget_status = 1 (see nugget_status argument below). Default value is TRUE for cov.model = "exponential" and FALSE otherwise.

pred.stabilization if not NULL, will truncate the estimated tau square to pred.stabilization * estimated sigma square. This provides additional stability in BRISC_prediction. Default value is 1e - 8.

verbose if TRUE, model specifications along with information regarding OpenMP support and progress of the algorithm is printed to the screen. Otherwise, nothing is printed to the screen. Default value is TRUE.

eps tolerance to be used in centred finite difference approximation of derivatives. Default value is 2e-05.

nugget_status if nugget_status = 0, tau.sq is fixed to 0, if nugget_status = 1 tau.sq is estimated. Default value is 1.
tol the input observation coordinates, response and the covariates are rounded to this many places after the decimal. The default value is 12.

Value

An object of class BRISC_Out, which is a list comprising:

- **ord** the vector of indices used to order data necessary for fitting the NNGP model.
- **coords** the matrix coords[ord,].
- **y** If stabilization = FALSE, returns the vector y[ord].
 If stabilization = TRUE, returns y[ord] + used white noise in stabilization process.
- **X** the matrix x[ord,,drop=FALSE].
- **n.neighbors** the used value of n.neighbors.
- **cov.model** the used covariance model.
- **eps** value of used eps for approximate derivation. Default value is 2e-05.
- **init** initial values of the parameters of the covariance model; accounts for stabilization.
- **Beta** estimate of beta.
- **Theta** estimate of parameters of covarinace model.
- **estimation.time** time (in seconds) required to perform the model fitting after ordering and pre-processing data in R, reported using proc.time().
- **BRISC_Object** object required for bootstrap and prediction.

Author(s)

Arkajyoti Saha <arkajyotisaha93@gmail.com>,
Abhirup Datta <abhidatta@jhu.edu>

References

Examples

```r
rmvn <- function(n, mu = 0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension not right!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)
n <- 1000
coords <- cbind(runif(n,0,1), runif(n,0,1))

beta <- c(1,5)
x <- cbind(rnorm(n), rnorm(n))

sigma.sq = 1
phi = 1

B <- as.matrix(beta)
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)
y <- rnorm(n, x%*%B + w, sqrt(tau.sq))

estimation_result <- BRISC_estimation(coords, y, x)
estimation_result$Theta # Estimates of covariance model parameters.
estimation_result$Beta # Estimates of Beta
```

BRISC_prediction

Function for performing prediction with **BRISC**

Description

The function **BRISC_prediction** performs fast prediction on a set of new locations with univariate spatial regression models using Nearest Neighbor Gaussian Processes (NNGP) (Datta et al., 2016). **BRISC_prediction** uses the parameter estimates from **BRISC_estimation** for the prediction. Some
code blocks are borrowed from the R package: spNNGP: Spatial Regression Models for Large Datasets using Nearest Neighbor Gaussian Processes
https://CRAN.R-project.org/package=spNNGP.

Usage

BRISC_prediction(BRISC_Out, coords.0, X.0 = NULL, n_omp = 1,
 verbose = TRUE, tol = 12)

Arguments

BRISC_Out an object of class BRISC_Out, obtained as an output of
BRISC_estimation.
coords.0 the spatial coordinates corresponding to prediction locations. Its structure should
be same as that of coords in BRISC_estimation. Default value is a column of 1
to adjust for the mean (intercept).
X.0 the covariates for prediction locations. Its Structure should be identical (in-
cluding intercept) with that of covariates provided for estimation purpose in
BRISC_estimation.
n_omp number of threads to be used, value can be more than 1 if source code is com-
piled with OpenMP support. Default is 1.
verbose if TRUE, model specifications along with information regarding OpenMP support
and progress of the algorithm is printed to the screen. Otherwise, nothing is
printed to the screen. Default value is TRUE.
tol the coordinates and the covariates corresponding to the prediction locations are
rounded to this many places after the decimal. The default value is 12.

Value

A list comprising of the following:
prediction predicted response corresponding to X.0 and coords.0.
prediction.ci confidence intervals corresponding to the predictions.
prediction.time time (in seconds) required to perform the prediction after preprocessing data in
R, reported using proc.time().

Author(s)

Arkajyoti Saha <arkajyotisaha93@gmail.com>,
Abhirup Datta <abhidatta@jhu.edu>

References

Examples

```r
rmvn <- function(n, mu = 0, V = matrix(1)){
  p <- length(mu)
  if(any(is.na(match(dim(V),p))))
    stop("Dimension not right!")
  D <- chol(V)
  t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)
n <- 500
coords <- cbind(runif(n,0,1), runif(n,0,1))

beta <- c(1,5)
x <- cbind(rnorm(n), rnorm(n))

sigma.sq = 1
phi = 1
tau.sq = 0.1

B <- as.matrix(beta)
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0,n), sigma.sq*R)

y <- rnorm(n, x%B + w, sqrt(tau.sq))
estimation_result <- BRISC_estimation(coords[1:400,], y[1:400], x[1:400,])
prediction_result <- BRISC_prediction(estimation_result,
                                      coords[401:500,], x[401:500,])
```

BRISC_simulation

Function to simulate data with BRISC

Description

The function BRISC_simulation simulates correlated data (known structure) using Nearest Neighbor Gaussian Processes (NNGP). BRISC_simulation uses the sparse Cholesky representation of Vecchia’s likelihood developed in Datta et al., 2016. BRISC_simulation uses BRISC_correlation for this purpose.
Usage

```r
BRISC_simulation(coords, sim_number = 1,
                 seeds = NULL, sigma.sq = 1,
                 tau.sq = 0, phi = 1, nu = 1.5,
                 n.neighbors = NULL, n_omp = 1,
                 cov.model = "exponential",
                 search.type = "tree",
                 stabilization = NULL,
                 verbose = TRUE, tol = 12)
```

Arguments

- `coords` is an $n \times 2$ matrix of the observation coordinates in R^2 (e.g., easting and northing).
- `sim_number` is the number of simulations. Default value is 1.
- `seeds` are seeds which are used in generation of the initial independent data. Default value is NULL. If non-null, the number of seeds must be equal to `sim_number`.
- `sigma.sq` is the value of sigma square. Default value is 1.
- `tau.sq` is the value of tau square. Default value is 0.1.
- `phi` is the value of phi. Default value is 1.
- `nu` is the starting value of nu, only required for matern covariance model. Default value is 1.5.
- `n.neighbors` is the number of neighbors used in the NNGP. Default value is 15.
- `n_omp` is the number of threads to be used, value can be more than 1 if source code is compiled with OpenMP support. Default is 1.
- `cov.model` specifies the covariance function to be used in modelling the spatial dependence structure among the observations. Supported keywords are: "exponential", "matern", "spherical", and "gaussian" for exponential, Matern, spherical and Gaussian covariance function respectively. Default value is "exponential".
- `search.type` specifies type of nearest neighbor search algorithm to be used. Supported keywords are: "brute", "tree" and "cb". "brute" and "tree" provide the same result, though "tree" should be faster. "cb" implements fast code book search described in Ra and Kim (1993) modified for NNGP. If locations do not have identical coordinate values on the axis used for the nearest neighbor ordering (see order argument) then "cb" and "brute" should produce identical neighbor sets. However, if there are identical coordinate values on the axis used for nearest neighbor ordering, then "cb" and "brute" might produce different, but equally valid, neighbor sets, e.g., if data are on a grid. Default value is "tree".
- `stabilization` is used when we use a very smooth covariance model (lower values of phi for spherical and Gaussian covariance and low phi and high nu for Matern covariance) in absence of a non-negligible nugget, the correlation process may fail due to computational instability. If stabilization = TRUE, performs stabilization by setting `tau.sq = max(tau.sq, sigma.sq * 1e-06).` Default value is TRUE for `cov.model = "exponential"` and FALSE otherwise.
verbose if TRUE, model specifications along with information regarding OpenMP support and progress of the algorithm is printed to the screen. Otherwise, nothing is printed to the screen. Default value is TRUE.

tol the input observation coordinates are rounded to this many places after the decimal. The default value is 12.

Value
A list comprising of the following:
- coords the matrix coords.
- n.neighbors the used value of n.neighbors.
- cov.model the used covariance model.
- Theta parameters of covariance model; accounts for stabilization.
- input.data the $n \times sim_number$ matrix of generated independent data. Here i^{th} column denotes the data corresponding to the i^{th} simulation.
- output.data the $n \times sim_number$ matrix of generated correlated data. Here i^{th} column denotes the data corresponding to the i^{th} simulation.
- time time (in seconds) required after preprocessing data in R, reported using, proc.time().

Author(s)
Arkajyoti Saha <arkajyotisaha93@gmail.com>, Abhirup Datta <abhidatta@jhu.edu>

Examples

```r
set.seed(1)
n <- 1000
coords <- cbind(runif(n,0,1), runif(n,0,1))
sigma.sq = 1
phi = 1

simulation_result <- BRISC_simulation(coords, sim_number = 3)
```

BRISC_variogram.ci

Function for plotting estimated Variogram and confidence region

Description

The function BRISC_variogram.ci plots estimated Variogram and associated confidence region. BRISC_variogram.ci uses the parameter estimates from BRISC_estimation and associated confidence interval from BRISC_bootstrap.
BRISC_variogram.ci

Usage

BRISC_variogram.ci(BRISC_Out, confidence_est,
 plot.variogram = FALSE)

Arguments

BRISC_Out an object of class BRISC_Out, obtained as an output of
 BRISC_estimation.
confidence_est bootstrap sample of the Theta parameters, obtained from BRISC_bootstrap.
plot.variogram if TRUE, plots the variogram and the associated confidence region. Default is
 FALSE.

Value

A list comprising of the following:

variogram variogram and associated confidence region corresponding to lag ranging from
 0 to 20, evaluated at 0.01 frequency.
Plot plots the Variogram and associated confidence region with legends.

Author(s)

Arkajyoti Saha <arkajyotisaha93@gmail.com>,
Abhirup Datta <abhidatta@jhu.edu>

Examples

rmvn <- function(n, mu = 0, V = matrix(1)){
 p <- length(mu)
 if(any(is.na(match(dim(V),p))))
 stop("Dimension not right!")
 D <- chol(V)
 t(matrix(rnorm(n*p), ncol=p)%*%D + rep(mu,rep(n,p)))
}

set.seed(1)
n <- 300
coords <- cbind(runif(n,0,1), runif(n,0,1))

beta <- c(1,5)
x <- cbind(rnorm(n), rnorm(n))

sigma.sq = 1
phi = 5
tau.sq = 0.1

B <- as.matrix(beta)
D <- as.matrix(dist(coords))
R <- exp(-phi*D)
w <- rmvn(1, rep(0, n), sigma.sq*R)

y <- rnorm(n, x%*%B + w, sqrt(tau.sq))

estimation_result <- BRISC_estimation(coords, y, x)
bootstrap_result <- BRISC_bootstrap(estimation_result, n_boot = 10)
varg <- BRISC_variogram.ci(estimation_result,
 bootstrap_result$boot.Theta,
 plot.variogram = TRUE)
Index

* model
 BRISC_bootstrap, 2
 BRISC_correlation, 4
 BRISC_decorrelation, 6
 BRISC_estimation, 9
 BRISC_prediction, 12
 BRISC_simulation, 14
 BRISC_variogram.ci, 16