A method for fitting the entire regularization path of the principal components lasso for linear and logistic regression models. The algorithm uses cyclic coordinate descent in a path-wise fashion. See URL below for more information on the algorithm. See Tay, K., Friedman, J. ,Tibshirani, R., (2014) 'Principal component-guided sparse regression' <doi:10.48550/arXiv.1810.04651>.
Version: | 1.2 |
Imports: | svd |
Suggests: | knitr, rmarkdown |
Published: | 2020-09-03 |
DOI: | 10.32614/CRAN.package.pcLasso |
Author: | Jerome Friedman, Kenneth Tay, Robert Tibshirani |
Maintainer: | Rob Tibshirani <tibs at stanford.edu> |
License: | GPL-3 |
URL: | https://arxiv.org/abs/1810.04651 |
NeedsCompilation: | yes |
Materials: | README |
CRAN checks: | pcLasso results |
Reference manual: | pcLasso.pdf |
Vignettes: |
Introduction to pcLasso |
Package source: | pcLasso_1.2.tar.gz |
Windows binaries: | r-devel: pcLasso_1.2.zip, r-release: pcLasso_1.2.zip, r-oldrel: pcLasso_1.2.zip |
macOS binaries: | r-release (arm64): pcLasso_1.2.tgz, r-oldrel (arm64): pcLasso_1.2.tgz, r-release (x86_64): pcLasso_1.2.tgz, r-oldrel (x86_64): pcLasso_1.2.tgz |
Old sources: | pcLasso archive |
Please use the canonical form https://CRAN.R-project.org/package=pcLasso to link to this page.