modeltime.ensemble: Ensemble Algorithms for Time Series Forecasting with Modeltime

A 'modeltime' extension that implements time series ensemble forecasting methods including model averaging, weighted averaging, and stacking. These techniques are popular methods to improve forecast accuracy and stability.

Version: 1.0.4
Depends: modeltime (≥ 1.2.3), modeltime.resample (≥ 0.2.1), R (≥ 3.5)
Imports: tune (≥ 0.1.2), rsample, yardstick, workflows (≥ 0.2.1), recipes (≥ 0.1.15), timetk (≥ 2.5.0), tibble, dplyr (≥ 1.0.0), tidyr, purrr, stringr, rlang (≥ 0.1.2), cli, generics, magrittr, tictoc, parallel, doParallel, foreach, glmnet
Suggests: gt, dials, utils, earth, testthat, tidymodels, xgboost, lubridate, knitr, rmarkdown
Published: 2024-07-19
DOI: 10.32614/CRAN.package.modeltime.ensemble
Author: Matt Dancho [aut, cre], Business Science [cph]
Maintainer: Matt Dancho <mdancho at business-science.io>
BugReports: https://github.com/business-science/modeltime.ensemble/issues
License: MIT + file LICENSE
URL: https://business-science.github.io/modeltime.ensemble/, https://github.com/business-science/modeltime.ensemble
NeedsCompilation: no
Materials: README NEWS
CRAN checks: modeltime.ensemble results

Documentation:

Reference manual: modeltime.ensemble.pdf
Vignettes: Getting Started with Modeltime Ensemble
Iterative Forecasting with Nested Ensembles
Autoregressive Forecasting (Recursive Ensembles)

Downloads:

Package source: modeltime.ensemble_1.0.4.tar.gz
Windows binaries: r-devel: modeltime.ensemble_1.0.4.zip, r-release: modeltime.ensemble_1.0.4.zip, r-oldrel: modeltime.ensemble_1.0.4.zip
macOS binaries: r-release (arm64): modeltime.ensemble_1.0.4.tgz, r-oldrel (arm64): modeltime.ensemble_1.0.4.tgz, r-release (x86_64): modeltime.ensemble_1.0.4.tgz, r-oldrel (x86_64): modeltime.ensemble_1.0.4.tgz
Old sources: modeltime.ensemble archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=modeltime.ensemble to link to this page.