library(hydrotoolbox)
El Departamento General de Irrigación (DGI) es la institución encargada de la gestión del agua en la provincia de Mendoza. Su división de hidrología es la encargada de monitorear la evolución de la nieve en la zona de alta montaña. En esta viñeta describo la función para leer los datos provenientes de las estaciones nivo-meteorológicas.
The Departamento General de Irrigación (DGI) is the institution in charge of water management in the province of Mendoza. Its hydrological division is in charge of monitoring the evolution of snowpack in the high mountain area. In this bullet I describe the function to read the data from the snow-meteorological stations.
El paquete hydrotoolbox ofrece la posibilidad de
leer estos archivos (formato .xlsx) de manera automática
mediante la función read_dgi()
. Al hacerlo, se cargará al
Global Environment de R un
data.frame
con los datos del archivo original. Cabe
destacar que esta función rellena automáticamente los vacíos existentes
entre registros con NA_real_
. Las siguientes líneas de
código muestran cómo aplicar esta función con la estación Toscas.
The hydrotoolbox package offers the ability to read
these files (.xlsx format) automatically using the
read_dgi()
function. Doing so will load to the Global
Environment the original series as data.frame
. It
should be noted that this function automatically fills the gaps between
records with NA_real_
. The following lines of code show how
to apply this function with the Toscas station.
# set path to file
<- system.file('extdata', 'dgi_toscas.xlsx',
path_file package = 'hydrotoolbox')
# because dgi files has multiple sheets we take a look
# on them
read_dgi(path = path_file, get_sheet = TRUE)
# read swe with default column names
head( read_dgi(path = path_file, sheet = 'swe') )
# assign name
head( read_dgi(path = path_file, sheet = 'swe', out_name = 'swe(mm)') )
Si bien esta función resulta de gran utilidad, a medida que la cantidad de variables a analizar crece, cargar estas tablas, ordenarlas y modificarlas, se vuelve tarea complicada. La solución que ofrece hydrotoolbox es la de trabajar con los objetos y métodos que el paquete provee. En las siguientes secciones muestro cómo usarlos.
Although this function is very useful, as the number of variables to be analyzed grows, loading these tables, ordering and modifying them becomes a complicated task. The solution that hydrotoolbox offers is to work with the objects and methods that the package provides. In the following sections I will show you how to use them.
Como menciono en los principios de diseño de este paquete
(vignette('package_overview', package = 'hydrotoolbox')
),
los datos que se registran en las estaciones deben almacenarse en un
mismo objeto. Por ello primero habrá que crear dicho objeto (o estación
hidro-meteorológica) y luego usar hm_build_generic()
, un
método que permite cargar automáticamente al objeto todas las variables
que la estación real registra.
As I mentioned in the design principles of this package
(vignette ('package_overview', package = 'hydrotoolbox')
),
the data that is recorded in the stations must be stored in the same
object. For this reason, you must first create the object (or
hydro-meteorological station) and then use
hm_build_generic()
, a method that allows you to
automatically load all variables to the object that the real world
station records.
library(readxl)
# path to all example files
<- system.file('extdata', package = 'hydrotoolbox')
path
# dgi file
<-
toscas hm_create() %>%
hm_build_generic(path = path,
file_name = 'dgi_toscas.xlsx',
slot_name = c('swe', 'tmax',
'tmin', 'tmean',
'rh', 'patm'),
by = 'day',
FUN = read_dgi,
sheet = 1L:6L )
Dado que la función constructora es la única que difiere de lo
desarrollado para los datos del SNIH, recomiendo (re)visitar esta viñeta
(vignette('snih_arg', package = 'hydrotoolbox')
)
Since the constructor function is the only one that differs from what
was developed for SNIH data, I recommend (re)visiting this vignette
(vignette ('snih_arg', package = 'hydrotoolbox')
)