TSSVM: Time Series Forecasting using SVM Model
Implementation and forecasting univariate time series data using the Support Vector Machine model. Support Vector Machine is one of the prominent machine learning approach for non-linear time series forecasting. For method details see Kim, K. (2003) <doi:10.1016/S0925-2312(03)00372-2>.
Version: |
0.1.0 |
Depends: |
R (≥ 2.3.1), e1071, forecast |
Published: |
2022-12-02 |
DOI: |
10.32614/CRAN.package.TSSVM |
Author: |
Mrinmoy Ray [aut, cre],
Samir Barman [aut, ctb],
Kanchan Sinha [aut, ctb],
K. N. Singh [aut, ctb] |
Maintainer: |
Mrinmoy Ray <mrinmoy4848 at gmail.com> |
License: |
GPL-3 |
NeedsCompilation: |
no |
CRAN checks: |
TSSVM results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=TSSVM
to link to this page.