LAM: Some Latent Variable Models
Includes some procedures for latent variable modeling with a
particular focus on multilevel data.
The 'LAM' package contains mean and covariance structure modelling
for multivariate normally distributed data (mlnormal(); Longford, 1987;
<doi:10.1093/biomet/74.4.817>), a general Metropolis-Hastings algorithm
(amh(); Roberts & Rosenthal, 2001, <doi:10.1214/ss/1015346320>) and
penalized maximum likelihood estimation (pmle(); Cole, Chu & Greenland,
2014; <doi:10.1093/aje/kwt245>).
Version: |
0.7-22 |
Depends: |
R (≥ 3.1) |
Imports: |
CDM, graphics, Rcpp, sirt, stats, utils |
LinkingTo: |
Rcpp, RcppArmadillo |
Suggests: |
coda, expm, MASS, numDeriv, TAM |
Enhances: |
lavaan, lme4 |
Published: |
2024-07-15 |
DOI: |
10.32614/CRAN.package.LAM |
Author: |
Alexander Robitzsch [aut,cre] |
Maintainer: |
Alexander Robitzsch <robitzsch at ipn.uni-kiel.de> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
https://github.com/alexanderrobitzsch/LAM,
https://sites.google.com/site/alexanderrobitzsch2/software |
NeedsCompilation: |
yes |
Citation: |
LAM citation info |
Materials: |
README NEWS |
In views: |
Psychometrics |
CRAN checks: |
LAM results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=LAM
to link to this page.